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2 INTRODUCTION

1 Introduction

In textbooks, or in explanations given by experienced engineers and mathe-

maticians, we often encounter the phrase "by inspection the solution is

This paper begins to develop an account of the role of inspection methods inI
engineering problem solving generally, and in programming specificaily. Ail

important motivation underlying this work is the belief that, in order to fur-
ther automate the programming process, we must have bette conp)utational
models of the problem solving methods used by programmers.

The outline of the paper is as follows. In Section 1, engineering proh-

lem solving is introduced as a domain of study and is compared with other
problem solving domains. Within the engineering context, two very different
kinds of problem solving method are contrasted: inspection methods and
uniform general methods.

In Section 2, the concept of inspection methods in programming is de-
veloped in detail via an extended scenario of analysis by inspection. This
section also includes short examples of synthesis by inspection and valida-
tion by inspection, which illustrate the shared knowledge (cliches) underlying
inspection methods.

Section 3 defines a formalism, called the Plan Calculus, which is used to
codify the knowledge underlying inspection methods in programming in a
convenient, canonical, and programming-language independent fashion.

Section 4 concludes the paper with a discussion of the relationship of
the Plan Calculus to programming languages and other formalisms, current
limitations of the Plan Calculus, and further work.

A companion paper [391 describes an initial library of common program
forms, which has been compiled using the Plan Calculus, and its use in
automated systems for analysis and synthesis of programs.

1.1 Engineering Problem Solving

Programming is viewed here as a kind of engineering activity. This is the
appropriate view for understanding the programming involved in the devel-
opment large software systems.' In this context, a first question to ask is:
What properties do different kinds of engineering have in common?

'The other major school of thought is to view programming as a kind of inal heinatical
activity, which is more appropriate for understanding the developnieit of algorithuis.

T W
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UNIFORM GENERAL METHODS 3

The first common property of engineering domains is the existence of a
set of standardized, well-understood, primitive building blocks. For exam-
ple, in electrical engineering all circuits are made up at the lowest level of
resistances, capacitances, inductances, and so on. Similarly, in mechanical
engiveering, all devices eventually come down to the primitive mechanisms of
lever, gear, rod, pulley, and so on. In software engineering, all programs can
be constructed out of assignment, conditional, and recursion. This feature
of engineering domains distinguishes them from many other problem solving
domains studied in Al (for example, medical diagnosis) in which there is no
well-established primitive level of description.

A second common property of engineering domains is that the central
problem can be posed abstractly as follows: Given the vocabulary of primi-
tives and the rules for their legitimate combination, devise a composite (usu-
ally hierarchical) structure which has some desired behavior. This character-
ization of engineering problems distinguishes them from other Al problems
(for example, playing chess) in which the relationship between structure and 0

function is not the central concern.

In addition to the central synthesis problem, engineers also need to be
able to analyze a device (i.e., to infer properties of its behavior from its
structure), and incrementally modify (debug) the structure of a device in
order to achieve a desired modification in behavior.

In summary, engineering problem solving is concerned with the analysis,
synthesis and debugging of hierarchical objects constructed for an explicit
purpose.

1.2 Uniform General Methods

Two quite different approaches have evolved for solving engineering problems.
One approach, which I call uniform general methods, takes advantage of
the fact that the primitive elements of the domain have well-understood
behaviors. For example, in electrical engineering, one way to determine the
frequency response of a linear circuit is to solve a set of equations derived from
the topology of the circuit, viewed primitively as a network of resistances,
capacitances and inductances.

Similarly in mechanical engineering, one way to analyze the stresses and
strais in a mechanical structure is by the so-called "finite element method."
This method also comes down to solving (usually by computer) a set of

S



4 INTRODUCTION

equations derived by viewing the mechanical structure as a grid of primitive
geometric elements that interact in simple ways.

Programming also has its uniform general methods. For example, the
Floyd-Hoare approach [18, 24] to program verification starts with the senian-
tics of the programming language primitives and combines them according,
to the structure of the program to derive a single large theorem to be proved
(again, usually by computer).

Uniform general methods, such as these examples, have several attractive
properties. First, they are based on firm mathematical foundations. As a
result, their domain of applicability is well-defined-you know when they will
work and when they will not. Second, the solution process is algorithmic.
and thus amenable to conventional computerization.

Despite these attractive features, the surpising fact is that experienced en-
gineers typically use uniform general methods only as a last resort. The rea-
son for this is that these methods typically return only an answer. They yield
little insight into what the engineer is ultimately concerned with, namely the
detailed relationship between structure and function in the device under anal-
ysis. The engineer needs to understand this relationship in order to modify
the structure of the device-for example, to bring it closer to achieving its
desired function.

Unfortunately, in real engineering applications (including programming),
a detailed description of how the behavior of a composite device follows from
the interaction of the behaviors of its primitive components is extremely com-
plex. In response to this complexity, engineering communities have evolved
intermediate vocabularies, giving names to those few out of all possible corn-
binations of primitives that have been useful in practice. The next section
discusses the kind of problem solving which takes place iii an engineering
environment that is enriched with this kind of knowledge.

1.3 Inspection Methods

Suppose you present an electrical engineer with a circuit and ask him to
answer a question about its behavior, such as: What is the gain (ratio be-
tween the strength of the output signal and the strength of the input signal)?
One way of answering this question is to employ a uniform general ntliod.
namely to methodically translate the structure of the circuit into a corre-
sponding set of equations, which can then be solved to obtain the answer.

- A



INSPECTION METHODS 5t

This is not, however, the kind of analysis method you are most likely

to elicit from an experienced engineer. If the given circuit is designed in
accordance with routine engineering practice, an experienced engineer will
first recognize the circuit. For example, he may say "this is a two-stage
audio amplifier." Given this recognition, the task of answering the posed
quest ion is greatly simplified. For example, in the case of a two-stage audio
amplifcr, the engineer knows immediately that the gain may be computed
from the product of the ratios of a certain pairs of resistors at key points in the
circuit. In electrical engineering, answering questions about a circuit by first
recognizing its form is called analysis by inspection. Only if you intentionally
concoct an obscure circuit, can you force an experienced engineer to resort
to setting up equations.

Similarly in programming, suppose you present an experienced program-
mer with a large data processing system, and enquire as to its maximum
running time for given size inputs. Rather than resorting to the first princi-
pies of complexity analysis, the experienced programmer will first recognize
which of the standard algorithms for searching, sorting, etc. are being em-
ployed and then use their known properties to compute the desired property
of the net behavior.
of There is also synthesis by inspection. For example, faced with the task
of iniplementing a common electrical function, such as a high-gain, low-
impedance amplifier, the hallmark of an experienced electrical engineer is his
abilily to retrieve from his mental (or actual) "cook book" an appropriate
first-cut design (which he may subsequently modify and refine).' Similarly,
faced with the task of implementing a common programming behavior, such
as associative retrieval, the hallmark of an experienced programmer is his
ability to call to mind a repertoire of appropriate standard techniques, such
as hashing, discrimination nets, or property lists.

I call these engineering problern solving methods, based on the recogni-
tion and use of standard forms, inspection methods; I call the standard forms
clichs. Examples of clich6s in the domain of circuits include voltage divider,
emitter-coupled pair, and Schmidt trigger. Examples of cliches in the do-
main of programs include bubble sort, doubly-linked list, and linear search.
Clichs form the shared technical vocabulary of a discipline. Although the
word clich6 has a negative connotation when used in the context of literary %

'Sue [46] for a discussion of the role of inspection in relation to abstraction and
debhuVing.

'Al A
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INTRODUCTION

criticism, in engineering, the repeated use of the same "forms of expression"
is desirable. Reuse improves productivity in the design process, as well as
the understandability (and thus maintainability) of the resulting devices.

A crucial part of any computational account of problem solving in an eni-
gineering domain is therefore a representation for the clichs in that dorinill.
In order to motivate the representation for programming cliches introduced
in Section 3, Section 2 illustrates the properties and use of programming
clich6s via several examples.

Notions similar to the clich6 idea appear in software engineering in the
work of Arango and Freeman [31 (domain models), Harandi and Young 122]
(design templates), and Lavi [29] (generic models); and in artificial intelli-
gence in the work of Minsky [35, 36] (frames, concept germs), Schank [5011
(scripts), and Chapman [11] (cognitive clich&s).

Im
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2 Inspection Methods in Programming

The two goals of this section are to deepen the reader's understanding of
what is meant by cliches in programming and to motivate the .:epresentation
for programming cliches defined in Section 3. To achieve these goals, this
section presents an informal but detailed scenario of program analysis by
inspection.

Solving an analysis problem in the context of programming amounts to
deriving some non-obvious properties of a program. To illustrate the role of
clichds in this process, let us put ourselves into the following not-so-imaginary
situation.

Suppose you are part of the maintenance team for a large software system.
You have been assigned a system enhancement task which requires the use of
a hash table. In the utilities portion of the system sources, you find the code
shown in Figure 1. Unfortunately, as you begin to use this implementation of
hash tables in your application, you realize that the documentation doesn't
answer an important question: How does this implementation handle dupli-
cate keys? More specifically: If you call TABLE-INSERT with an entry whose

... key might already be in the table, do you first have to call TABLE-DELETE to

delete the old entry? (Perhaps, in the original application, duplicate keys
never occurred, so the implementor didn't think to document what the be-
havior was under these conditions.)

As a straw man, you might consider solving this analysis problem by
formulating it as a theorem-something along the lines of proving that for
any table t and entry e,

table-delete (table-insert(t, e), key(e)) = t.

If a theorem like this is true, then you can feel free to add and delete entries
without worrying about duplicates. If it is not true, however, you need to
understand how the proof fails so that you know what aspects of the behavior
of TABLE-INSERT and TABLE-DELETE you can rely upon.

More likely, if you are an experienced programmer, you will take the
approach of first studying the code to discover what clich were used-what
is sometimes called "reverse engineering"-and then answering the question
of interest based on your understanding of the design. In this example, you
know from experience that there are basically two ways to handle duplicate
entries in any aggregate structure: either you check for duplicates at insertion
time or you search for duplicates at deletion time. The question then boils



8 INSPECTION METHODS IN PROGRAMMING

(DEFUN TABLE-LOOKUP (TABLE KEY)
(LET ((BUCKET (AREF TABLE (HASH KEY TABLE))))

(LOOP
(IF (NULL BUCKET) (RETURN NIL))
(LET ((ENTRY (CAR BUCKET)))

(IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY)))
(SETQ BUCKET (CDR BUCKET)))))

(DEFUN TABLE-INSERT (TABLE ENTRY)

(PUSH ENTRY (AREF TABLE (HASH (KEY ENTRY) TABLE)))
TABLE)

(DEFUN TABLE-DELETE (TABLE KEY)

(LET* ((INDEX (HASH KEY TABLE)) 8
(BUCKET (AREF TABLE INDEX)))

(IF (EQUAL (KEY (CAR BUCKET)) KEY)
(SETF (AREF TABLE INDEX) (CDR BUCKET))

(BUCKET-DELETE BUCKET KEY)))

TABLE)

(DEFUN BUCKET-DELETE (BUCKET KEY)

(LET ((PREVIOUS BUCKET))

(LOOP
(SETQ BUCKET (CDR PREVIOUS))
(IF (NULL BUCKET) (RETURN NIL))
(WHEN (EQUAL (KEY (CAR BUCKET)) KEY)

(RPLACD PREVIOUS (CDDR PREVIOUS)) %

(RETURN NIL))
(SETQ PREVIOUS BUCKET))))

Figure 1. The Common Lisp functions above implement a ha.1i ta ble. Not-
that the 21S function is not defined here: assume it is just a numerical forinula
which, although it may also be a clich6, is not the topic of this example. Ihe KEY
function simply extracts some field from an entry. There should also I)0 a fun ion
for making a new table.

. p. ,%



PROGRAM ANALYSIS BY INSPECTIOV

(DEFUN TABLE-LOOKUP (TABLE KEY)

(LET ((BUCKET (AREF TABLE (HASH KEY TABLE))))

(LOOP

(IF (NULL BUCKET) (RETURN NIL))

linear
(LET ((ENTRY (CAR BUCKET))) search

(IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY)))

(SETQ BUCKET (CDR BUCKET)))))

Figure 2. Recognition of linear search clich6.

down to recognizing which (if either) of these two decisions was made in
the code. Note also that by taking the approach of understanding the code
completely first, you will be in a good position to modify the program to fit
your current application, if necessary.

Let us now proceed step by step through an introspective account of rec-
ognizing the cliches in the code in Figure 1. As well as introducing further
examples of clich6s in programming, this scenario also illustrates some im-
portant structural aspects of programming clichs which must be addressed
in tie formal representation.

2.1 Program Analysis by Inspection

We begin with the first function in Figure 1, TABLE-LOOKUP. This function is
essentially a loop. A key feature of a loop is the number and form of its exit
conditions. The loop in TABLE-LOOKUP has two exits as indicated in Figure 2.
More specifically, this is an instance of the linear search clich6:

A linear search is a loop in which a given predicate (the same
one each time) is applied to a succession of values (in this case,
the values of the variable ENTRY) until either: a value is found
which satisfies the predicate, in which case the search is termi-
nated and the value satisfying the predicate is made available
Oultsile the loop (in this case via (RETURN ENTRY)); or there are

W'



10 INSPECTION METHODS IN PROGRAMM\ING

(DEFUN TABLE-LOOKUP (TABLE KEY)

(LET ((BUCKET (AREF TABLE (HASH KEY TABLE))))

(LOOP

(IF (NULL BUCKET) (RETURN NIL))

list (LET ((ENTRY (CAR BUCKET)))

enumeration (IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY)))

(SETQ BUCKET (CDR BUCKET)))))

Figure 3. Recognition of list enumeration clich6.

(DEFUN TABLE-LOOKUP (TABLE KEY)

(LET ((BUCKET (AREF TABLE (HASH KEY TABLE))))

(LOOP

(IF (NULL BUCKET) (RETURN NIL))

.linear

list (LET ((ENTRY (CAR BUCKET))) [ search

enumeration (IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY)))

(SETQ BUCKET (CDR BUCKET)))))

Figure 4. Overlapping occurrences of clich6s.

,
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1~noc.RANI ANALYSIS BY INSPECTIC V 11

no more values, in which case the search is terminated with a
failure indication (in this case, by returning NIL).

Figure 3 indicates that TABLE-LOOKUP also contains an occurrence of one
of the most familiar Lisp programming cliches, namely the CAR, CDR, NULL
pattern of list enumeration. Note that "pattern" in this context does not
mean a particular configuration of the program string or parse tree, but rather
a p~articular set of operations connected by the appropriate data and control
flow. In the case of list enumeration, for example, the input to the NULL test
must be the same as the input to the CAR and the CDR; and control must exit
the loop when the NULL test succeeds. The formal representation defined in
Section 3 supports this notion of pattern in the definition of programming
clich"'s.

Another important aspect of programming cliches illustrated in TABLE-
LOOKUP is the fact that occurrences of cliches can overlap. Figure 4 shows
the superp~osition of the linear search and list enumeration clich&, recognized

-I
a

above. Notice that the NULL exit test fills two roles: it is the failure exit of the

linear search and also the empty-list test of the list enumeration. This way
of decomposing programs violates the strictly hierarchical approach of most
current programming methodologies. We will see several examples, however,
in which overlapping decomposition is necessary in order to recognize all the
clich6s in a program.

The code for TABLE-INSERT is only one line long. The only clich6 in
TABLE-INSERT has already migrated into the programming language: The
PUSH macro in Lisp captures the clichE d use of CONS to add an element onto
the front of a list, as in

(SETQ L (CONS ... L)).

(Secn i 4 discusses the relationship between clich& and programming ]an-
* gujages.)

SMoving on to TABLE-DELETE (Figure 5), we see that the body of this
function is a conditional which checks for a common special case that comes
tip in the implementation of destructive deletion operations, namely deleting
the element at the head of the data structure.' The form of this cich , which

tnight w be called special case head deletion, is as follows:

"Failure to check for this special case leads to a characteristic bug. For a further
dthrma-aio of bug clichss --a topic aot pursued in this paperT-sEe [51].

NOOKUP i a occurrence of c an
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(DEFUN BUCKET-DELETE (BUCKET KEY)

(LET ((PREVIOUS BUCKET))

(LOOP

(SETQ BUCKET (CDR PREVIOUS))

(IF (NULL BUCKET) (RETURN NIL))

(WHEN (EQUAL (KEY (CAR BUCKET)) KEY) linear

(RPLACD PREVIOUS (CDDR PREVIOUS)) search

(RETURN NIL))

(SETQ PREVIOUS BUCKET))))
5%"

Figure 5. Recognition of linear search clich6.

(DEFUN BUCKET-DELETE (BUCKET KEY)

(LET ((PREVIOUS BUCKET)) V

(LOOP

(SETQ BUCKET (CDR PREVIOUS))

trailing (IF (NULL BUCKET) (RETURN NIL))

pointer (WHEN (EQUAL (KEY L(CAR BUCKET) KEY) |

list
enumeration (RPLACD PREVIOUS (CDDR PREVIOUS))

(RETURN NIL))

(SETQ PREVIOUS BUCKET))))

Figure 6. Recognition of trailing pointer list enumeration clich6.

P"

| ~



PROGRAM ANALYSIS B1 I\NSPECTIOV 13

(DEFUN TABLE-DELETE (TABLE KEY)

(LET* ((INDEX (HASH KEY TABLE))

(BUCKET (AREF TABLE INDEX)))

(IF (EQUAL (KEY (CAR BUCKET)) KEY)

special case
(SETF (AREF TABLE INDEX) (CDR BUCKET)) head deletion

(BUCKET-DELETE BUCKET KEY)))

TABLE)

Figure T. Recognition of special case head deletion clich.L

If the head of the data structure (in this case, the CAR of the list
BUCKET) satisfies the criterion for deletion (in this case, its KEY is
equal to the given key), then update all pointers to the head of
the structure to point instead to the tail of the structure (in this
case the CDR of the list). Otherwise, if the head of the structure
is not to be deleted, use a deletion by side-effect operation which
works for "internal" (non-head) elements.

This example illustrates, among other things, that data abstraction needs
to be a part of the formalization of programming cliches, since one wants to
refer abstractly in the clich6 above to the "head" and "tail" of a structure,
separate from particular implementations (such as the CAR and CDR of a Lisp
list).

Moving on to BUCKET-DELETE (Figure 6), note that this function also con-
tains a linear search. The syntax in this case is very different from the linear
search in Figure 2. However, the data and control flow relationships between
the two search exits are the same.

BUCKET-DELETE also has instances of the CAR, CDR, and NULL operations
with data and control flow between them satisfying the constraints of the list
enumeration clich6 (see Figure 7). Again, although the syntax of this occur-
rence of list enumeration is very different from the syntax in TABLE-LOOKUP,

we recognize the same clich6. Note that this occurrence of the clich6 has an
additional bit of structure, which is a common extension of list enumeration,

,..- * ";..; , %-:-:-::-::., _-,-. V% %f* 5;~S
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(DEFUN BUCKET-DELETE (BUCKET KEY)

(LET ((PREVIOUS BUCKET)

(LOOP

(SET BUCET (DR PEVIOS)). %

triig(IF (NULL BUCKET) (RETURN NI)

pone (WHEN (EQUAL (KEY CAR BUCKET) KEY) sac
splice

enueraion (RPLACD PREVIOUS (CDDR PREVIOUS)) ou loo

(RETURN NI))

(SETQ PREVIOUS BUCKET)))

~~~Figure 9. Ovrapn ieRseachgntan trailig pointerlistenmraio lili

p' .;
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IROGRAM ANALYSIS BY INSPECTIOV 15

namely a "trailing pointer." The control and data flow in this loop is ar-
ranged so that on each iteration there is a pointer (in the variable PREVIOUS)
to the cell in the list whose CDR is the current cell being enumerated (in the
variable BUCKET). This extension of list enumeration, which might be called
trailing pointer list enumeration is most commonly used (as is the case here)
in connection with destructive deletion operations.

This example illustrates that programming knowledge includes not only
clich6s, but also relationships between them. Extension is one of a number of
different relationships between cliches which are supported by the formalism
described in the next section.

Finally, note in Figure 8 that the occurrences of the list enumeration and
linear search clichs in BUCKET-DELETE overlap in a similar manner to those
in TABLE-LOOKUP.

A final clich6 that can be recognized in BUCKET-DELETE is splice out, as
shown in Figure 9. The arbitrary use of side effects like RPLACA and RPLACD
can lead to extremely hard-to-understand code. In this case, however, RPLACD
is being used in a very specific context: its second argument is the current
pointer of a list enumeration and its first argument is the corresponding
trailing pointer. This use of RPLACD removes the current element from the
enumerated list (by side effect). A clich6 like splice out is an example of how
the recognition of cliches can bypass intractable general-case reasoning.

Using the Results of the Analysis

Now that you have finished analyzing the program, you are in a position
to answer the original question quite easily: This implementation does not
handle duplicate keys at all, because there is no checking for duplicate keys
at insertion time (TABLE-INSERT just does a push) or at deletion time (the
linear search clich6 used in TABLE-DELETE stops after finding the first value
satisfying the criterion). Therefore, you do have to call TABLE-DELETE before
each call to TABLE-INSERT in which the entry might have a duplicate key.

Furthermore, with this detailed understanding of the relationship between
the structure and function of the program, you are also in a good position to
modify the program, if desired. For example, suppose you decide to handle
duplicate keys at deletion time. There are two changes you need to make to
the program.

First, you need to replace the linear search clich6 used in BUCKET-DELETE
by a related clich6, exhaustive linear search, which doesn't stop after find-

Se.
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ing the first value satisfying the criterion, but rather searches for all values
satisfying the criterion. The splice out action is then applied to each entry
found by the search.

Second, because there could be several duplicate keys at the head of a
bucket, the special case head deletion clich6 in TABLE-DELETE needs to be
replaced by an exhaustive linear search, in which the head deletion action
(the SETF) is applied to each case found. (As a code compression. this loop
could be combined with the loop in BUCKET-DELETE.)

Viewing the hash table program as the composition of cliches like linear
search, splice out, and so on, these changes are modular-a matter of adding
or replacing a small number of conceptual parts--even though this inay result
in many scattered changes at the code level.

2.2 Program Synthesis by Inspection
- The notion of recognizing familiar forms applies not only to analysis, but also

to the synthesis of programs. For example, consider synthesizing a program
to satisfy the following specification: Given a set b and a key k, return a
value e, such that

(e E b A key(e) = k) V (e = nil A VxEb[key(x) # k]).

A well-known uniform general method for program synthesis is to treat
such a specification as a theorem (literally, Vbk3e ... ). If this theorem can
be proved using constructive proof techniques only, then the resulting proof
is essentially a program which satisfies the specification.

More likely, if you are an experienced programmer, you will recognize that %
this specification is not some arbitrary formula in first order logic, but rather
an instance of a common specification cliche, which might be called find if
present: Given an aggregate data structure, find an element satisfying some
criterion; or if there is none, return a distinguished value. From experience, -

this specification suggests the combination of an enumeration with a linear
search clich6, as in the following code.

(LET ((BUCKET ...))

(LOOP
(IF (empty BUCKET) (RETURN NIL))
(LET ((ENTRY (first BUCKET)))

(IF (criterion ENTRY) (RETURN ENTRY)))
(SETQ BUCKET (rest BUCKET))))

"-,.
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Enumeration is an abstract clich6 comprised of the above pattern of data
and control flow between operations on an abstract data type that supports
the operations of selecting the first element (first), computing an aggregate
with all but the first element (rest), and testing for empty (empty). The
linear search clich6, discussed earlier, is comprised of the pattern of data and
control flow associated with the criterion and empty tests above.

The next step in the synthesis is to fill in the criterion role of the linear
searchi with the code for testing the criterion of the specification (key(e) = k).

(LET ((BUCKET ... ))

(LOOP
(IF (empty BUCKET) (RETURN NIL))
(LET ((ENTRY (first BUCKET)))

(IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY)))
(SETQ BUCKET (rest BUCKET))))

To obtain the code for the loop of TABLE-LOOKUP in Figure 1, the final
decision to be made is to implement buckets as Lisp lists. This amounts to
filling in CAR for first, CDR for rest and NULL for empty.

(LET ((BUCKET ...))

(LOOP
(IF (NULL BUCKET) (RETURN NIL))

(LET ((ENTRY (CAR BUCKET)))
(IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY)))

(SETQ BUCKET (CDR BUCKET))))

This example of synthesis by inspection brings out several additional
points regarding the formalization of cliches. First, we see that there are
standard forms of specifications as well as programs. This suggests a wide-
spectrum language, so that the same approach can be applied to both speci-
fication and program constructs. Second, we have seen examples of two more
kinds of relationships between clich6s, namely implementation (enumeration
and linear search can be used to implement the find if present clich6), and
specialization (list enumeration is a specialization of enumeration).

,ng k, , %.mw -, ,',. , -. .',. .- .>,- '.. ..,..,.,, .,-, ,- ,, -:-. ._ .. .. . ._._- _ ._-., _..r .. . ..- ,,.V.~
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2.3 Program Validation by Inspection

Program validation is concerned with making sure that programs do what
they are supposed to, or conversely, getting rid of errors.

A uniform general method for program validation is programn vriiCa i.,,,

In this approach, a formal proof is constructed to guarantee that a prugrail
satisfies a given formal specification (e.g., a set of preconditions and Io!st-
conditions). TI i is done by combined the specification with the axioinLs for
each language p imitive in the program, yielding a single formula/theoren
to be proved. This formula can then be passed to a general purpose tleorcn
prover. If the theorem is true, then the program satisfies the specilicatioiz.
Often, however, the theorem is not true, which means that the program has
an error. Unfortunately, when this happens, the theorem prover is not inl a
position to give you much advice as to where in the program the error ziight
be or how to fix it.

Although the ultimate goal of program verification is to confirm that a
given program is "correct" with respect to some specification, most of th,
verification process is actually spent dealing with programs that are not
yet correct. What is needed, therefore, is a complementary approach more
oriented towards diagnosing errors in terms of the structure of the program.
so that the programmer has some hint how to proceed. One such approach is
a kind of inspection method that night be called near-miss cliche recognition.

Near-miss cliche recognition is based on the idea of near-miss pattern
matching, as used by Winston [64] and others. In near-miss recognition. d

clich6 is recognized when most but not all of its required elements are j)reselit.
To illustrate, consider the following buggy version of the hash table bucket
deletion function.

(DEFUN BUCKET-DELETE (BUCKET KEY &AUX PREVIOUS)

(LOOP
(IF (NULL BUCKET) (RETURN NIL))
(WHEN (EQUAL (KEY (CAR BUCKET)) KEY)

(RPLACD PREVIOUS (CDDR PREVIOUS))
(RETURN NIL))

(SETQ PREVIOUS BUCKET) I-
(SETQ BUCKET (CDR PREVIOUS))))

Under certain input data conditions, this function will cause e'x',cutioii to
be interrupted with an error report something like the followiii

' . ,-2 22.2."" , - '. -'.'g2.'.'o2 €,''2 ". ¢.-'2'."" '2g '.'£'Q£¢<..'. " _ .' ', " " .'j', . ', j-o .2.N,"..% *.¢'



PROGRAM VALIDATION BY INSPECt ION 19

(DEFUN BUCKET-DELETE (BUCKET KEY &AUX PREVIOUS)

(LOOP

near-miss (IF (NULL BUCKET) (RETURN NIL))

trailing (WHEN (EQUAL (KEY (CAR BUCKET)) KEY)

pointer

list (RPLACD PREVIOUS (CDDR PREVIOUS))

enumeration (RETURN NIL))

(SETQ PREVIOUS BUCKET) p

(SETQ BUCKET (CDR PREVIOUS))))

Figure 10. Near-miss recognition of trailing pointer list enumeration clich&

***ERROR*** RPLACD - NIL INVALID ARGUMENT.

Applying near-miss clich6 recognition to this function (see Figure 10) re-
veals a near-miss occurrence of the trailing pointer list enumeration clich6. In
this definition of BUCKET-DELETE, the appropriate list enumeration operations
are present with the appropriate relationships between them, and there is a
trailing pointer (in the variable PREVIOUS) whose CDR is the current cell being
enumerated (in the variable BUCKET), except on the first iteration. Based on
this recognition, the following helpful diagnostic message could be produced:

It looks like you are trying to implement a trailing pointer list enu-
meration of BUCKET, with PREVIOUS as the trailing pointer. Note,
however, that on the first iteration of the enumeration, the CDR
of PREVIOUS is not guaranteed to be equal to BUCKET.

There are, of course, many ways of modifying the program to fix this bug
(a correct version is shown in Figure 7). What this example illustrates is that
the same knowledge of clich6s can be used in many parts of the programning
process.

Near-miss clich6 recognition is obviously not a complete approach to val-
idation. It (loes not guarantee that a program does what you want, but only
that it does not have a certain class of structural flaws. On the other hand,

, ~ - V* *- ' ~ rj - -
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this approach does not require you to provide a formal specification, which
in many instances is at least as hard to write as the prograir ;ti-lf. Furt her
more, near-miss clich6 recognition, when it works, provides the programmer

with a very germane characterization of the error.
An interesting line of research, which is being pursued by WVil! !6)1

to develop distance metrics which distinguish near-misses that are Useful
diagnostics, from those that are so far away as to be irrelevant.

This discussion of validation introduces another desideratt, for the rep-
resentation of programming clich~s. Since near-miss clich6 recognition is iiot
a complete approach, it is desirable to provide a formal semantics for- h,
representation of cliches that will make it possible to apply a combinatiat n,
of inspection methods and more general, theorem-proving methods to vali-
dating programs. For example, the synthesis by inspection scenario in the
preceding section suggests a verification approach in which a proof structure
is built in parallel with the synthesis steps by combining pre-proved lemmas
(associated with the clich&s), using general theorem-proving as the "glue.'"
This hybrid approach is currently being pursued in a system by Feldman and
Rich [44].
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3 The Plan Calculus

Formalizing the notion of inspection methods introduced in Sections 1 and 2
has two steps. The first step is to define a representation language for pro-
gramming clich6s. This representation language, called the Plan Calculus,
is the topic of this section. The second step is to use the Plan Calculus to
codify a library of specific clich6s. An initial library of cliches for the routine
mani)ulation of symbolic data is described in a separate paper [39].

3.1 Desired Properties of the Representation

.\ reader of the scenarios in Section 2 might be left with the impression
that a programming clich6 could be represented most directly as some frag-
ment of program text, perhaps with holes in it. Although this is an effective
expository technique, program text or schemas lack several important prop-
erties that are desired in a knowledge representation for cliches, especially
for the purpose of building automated programming tools. Three important
properties that templates and schemas lack are:

* Canonical Form

* Convenient Manipulation

* Language Independence

A discussion of these properties, and why program text or schemas lack them,
serves as a good introduction and motivation for the Plan Calculus.

The first property which program text or schemas lack is canonical form.
Consider the linear search clich6 as an example. The idea of a linear search
could be expressed informally in English as something like the following.

A linear search is a loop in which a given predicate (the same one
each time) is applied to a succession of values until either a value
is found which satisfies the predicate, in which case that value is
made available outside the search; or there are no more values,
in which case the search is terminated with a failure indication.

In building a library of clich6s, we would like there to be a unique formal p.-

structure representing this concept. Unfortunately, in Lisp and most other
programming languages, this kind of computation can be written in many
different forms, such as:

U.;
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(LOOP
* (IF exhausted (RETURN NIL))

(IF (predicate current) (RETURN current))

Or using PROG with only one RETURN, instead of two:

(PROG 0)
LP (COND (exhausted NIL)

(T ...

(IF (predicate current)
(RETURN current))

(GO LPM))

Or even tail recursively:

(DEFUN SEARCHC.)
(COND (exhausted NIL)

CT ...

(COND ((predicate current) current)
* (TT...

(SEARCH ...

The problem here is choosing which version to use. Viewedl formally
as abstract syntax trees in the grammar of the programminmg language. tIme

different versions above have very different structures. Yet, considering thie
semantics of the programming language, all three versions specify esseniilally
the same algorithm, i.e., the same set of computations with the same data
and control relationships between them.4

The Plan Calculus remedies this problem by representing data andl cowt r-o
flow structure explicitly. For example, all three of the schienias aibove (anld
many other such variations) are canonicalized to the single represenlationl

'Some readers may feel that the tail recursive version is fundantalv ly rim 1kow-
ever, recent implementations of Lisp treat loops and tail recursion as altrnate' sti ij
expressions of iteration, i.e., tail recursion is executed] without accumulating stack depth.

ve ..
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exhausted.-test

T F=

SI

found:

F FT

coninaton

linear-searc

Figure 11. Plan for linear search clich6.
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shown in Figure 11.' A programming clich6 represented in the Plan ('alcultis.
such as Figure 11, is called a plan.

The notation used in drawing diagrams of plans is descrIb,-,l in detail
below. Note for the moment that the formalism takes its inspila:icti fitoi,j
the kind of diagrams that programmers often scrawl on blackboards a ,I 1

backs of envelopes when in discussion with other programmers. A plan i.

essentially a hierarchical graph structure made up of different kinds f boxes
and arrows. The inner rectangular boxes denote operatio., anid tests. whil
the arrows between boxes denote data flow (solid arrows) and control flow
(solid arrows with double cross-hatch marks).

A second desired property which program text or schemas lack i ,cor0v,-
nient manipulation. As anyone who has ever written a complicated lilac ,
package can attest, operations on program text, such as concatentat ion and
substitution, are in general a quite tricky business. Typical problems in-
clude unintended interactions due to accidental duplication of identifiers and.
awkward constructions due to mismatch of syntactic forms. Moreover. ma-
nipulations which are conceptually simple from an algorithmnic point of view
often correspond to inconvenient transformations at the program text level.
For example, consider combining a clich6 of the form

(A (B ... ) (C . .) . )

with another clich6 of the form

(F (G ... ) (H .. )

such that the output of G is used as the third input to A.

Operating on these cliches in the program text form shown above, this
combination is achieved by a complicatel sequence of rearraigem~ents rc I,,t-..
ing in code something like the following:

(LET ((X (G ...)))

(A (B ...) (C ...) X)
(F X (H ... )))

In the Plan Calculus the combination of these two clich,'es, cali ,xplcs,,(d(
as a plan, is a matter of adding only the single data hlow arc s ,wr lv ,,

'A program which automatically pefornis this calonicalization h1a,- h,.,i h i- ii
by Waters [611. 1 IF

% %%
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B C G I JH I

A F

Figure 12. Combining two plans by adding a data flow arc.

bold line ini Figure 12. This illustrates how the Plan Calculus is a represen-
tationi in which the operations that typically occur in the application task
(narnely, manipulating the algorithmic content of programs) have a more
dire( corresJpondence with the operations which are naturally supported by

the syntax of the representation (namely, addition, deletion and modification
of arcs and nodes in a directed graph).

The use of data flow in the Plan Calculus also reduces the complexity of
reasoning about programs by eliminating a lot of spurious side effects. In a
conventional prograrnning language semantics, every assignment statement
is a side effect. Most assignment statements, however, are not inherently
interesting state changes. but rather are part of a pattern of variable assign-
rment.q and references used to move data from its point of production to its
point(s) of use. The Plan Calculus models this use of variables explicitly as

data flow arcs.
For exanilple. from a programming-language point of view, the following

code involves a side effect (to the va ia 1 le X):

(SETQ X (P A))

(Q X)

The corresponding plan, ho(wever, has no side effects in it--the use of the
Vaia dIe X correspondIs to a data flow ar'c from P to Q. (Side effects in the
Plan ('alculus are discussed further in Section :3.6.)

Tle third, and most obvious, property that program text or schemas lack

is lari-gage ii'ej ii.nd(nce. This is a problem for two reasons. First, from

a priacical , pOit (f view. the coupilation of libraries of cliches to support@%
V.N
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automated programming tools is likely to be an expensive prot,css, whose
cost will need to be amortized over as broad use as possible. A separate li-
brary for each programming language makes this amortization more difficult.
Second, from a theoretical point of view, common experience I, 1s us t hat if
a programmer knows how to write a clich6 like hash table, linear search. ,,,
bubble sort in Lisp, he also knows how to do it in other laiiguags it wha ih

-" he is fluent.
The relationship between the Plan Calculus and prograiiuniig languages

is discussed further in Section 4. Modules have been implemented to translate
between the Plan Calculus and an assortment of programming langutages [14,
59, 61].

An additional desideratum for the representation of clich6s is that the
formalism be neutral between analysis and synthesis. This turns out to
be of practical importance in building interactive programming aids, since
in practice these two activities are intermingled. A neutral representation
of cliches is also theoretically more attractive than a representation tailored
specifically for analysis or synthesis only, since is em a priori a simpler accouit
of the phenomena.

3.2 Plans

The choice of the term plan for the knowledge representation used in this
work is motivated from two directions. One sense of the term is takei from
viewing programming as a kind of engineering activity. Other einueerimig
disciplines have developed specialized schematic languages for representing
the structure and function of devices and partial designs. For example, an
electrical engineer uses circuit diagrams and block diagrams at various levels
of abstraction; a structural engineer uses large-scale and detailed blue prinlts
which show both the architectural framework of a building and ;iso various

subsystems such as heating, wiring and plumbing; a mechanical engineeIr
uses overlapping hierarchical descriptions of the interconnections betwce
mechanical parts and assemblies. In this sense, the Plan Calculus is intended
to serve as a "blueprint language" for programs. Also, as in ct her cgim_,crilig
disciplines, the same language is used to describe both spccific devices and
the cliches out of which these devices are commonly built.

A fundamental characteristic shared by all these types of chgimeriii ,
plans is that at each level there is a set of parts with constraints between
them. Sometimes these parts correspond to discrete physical um i ,1'it,.

, %%
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such as transistors in a circuit diagram. More often, though, the decomposi-
tion is in terms of function. For example, a simple amplifier in an electrical
block diagram has the functional description V2 = kV, where V and V2 are
the input and output signals, and k is the amplification factor. As far as this
level .)f plan is concerned, the amplification may be realized in any number of
ways. A primitive component may be used or another plan may be provided
which decomposes the amplifier further. By analogy, plans in programming
speciFy the parts of a computation and constraints between them.

Aaother sense of the term plan is taken from the planning subfield of
Al. 'lhe goal of a planning algorithm is to find a sequence of actions which
transforms a given initial state of the world into a desired final state. This
probl,'ln is analogous to the synthesis of straight-line programs. In early
plamiing work (e.g., [17]), a plan was represented simply as a sequence of
actions. Sacerdoti [49], however, showed that it was much more efficient to
use a partially-ordered set of actions as the basic representation. In this
repre.;entation, the planning algorithm needs to consider only those ordering
constraints which are actually required by the current set of actions, rather
than forcing an arbitrary total ordering. By analogy, a set of operations

., in the Plan Calculus may be partially ordered by control and data flow, as
oppo-;cd to operations in program text, which must be totally ordered.

Like plans in the planning literature [48], plans in the Plan Calculus
provide representation at different levels of abstraction. Symbuolic evaluation
of plans in the Plan Calculus [53] is also very similar to techniques used in
planning.

Stru-tural and Logical Sublanguages

The Plan Calculus is divided into a structural sublanguage and a logical
sublanguage. The structural sublanguage is the portion of the Plan Cal-
culus shown in plan diagrams. The logical sublanguage comprises the pre-
conditions, postconditions, and other logical statements which annotate the
diagrams. Some applications require only the structural part of the Plan
Calculus; others also make use of the logical sublanguage.

The following sections undertake the detailed definition of the Plan Cal-
cultis in two stages. First a diagrammatic notation for plans is introduced
along with an informal description of its semantics in terms of an interpreter
for plan diagrarns. Following this intuitive introduction, a formal syntax for
the st ructural sublanguage is given.

S .'..,.

• ','.'o'K

Sq

K

%K

S K-,' %- , .. .o€.€o€ ,, % ot -o"' •"',,-' o o ". d o . 'o , '.'-"e"°%'", '° ' a - . " "-
° ' ' - "

%



28 THE PLAN CALCULU[S

old.-set inpuktany universe.-set criterion predica te

set-add 
sm

new:set output:aiiy

true-input:any false-in put:any

T F

join I

output:any

Figure 13. Examples of atomic plan diagram elements: an input/output specifi-
cation (Set-Add), a test specification (Some), and a join specification (Join). %t

A formal semantics for the complete language has been developed [10,
41, 42], but is beyond the scope of this paper. The definition of tire logical
sublanguage is also omitted here, since it is best treated within a larger
discussion of the formal semantics.

3.3 Plan Diagrams

A plan diagram is a convenient graphical depiction of the st ructural port ion
of the Plan Calculus. Examples of the atomnic elements out of which plan
diagrams are composed are shown in Figure 13.

Input/Output Specifications

The box labelled Set-Add in Figure 13 Is an example of an inpatlout put
specification. An input/output specification is drawn as a rectangular box
with arrows entering at the top (denoting the inputs) anid leaving fromt lie
bottom (denoting the outputs). Each inp1 ut or out put is la belled with Iit ii am
and a type, separated by a colon. For example, Set-Add lias two iputs: (~
(of type Set) and Input (of type Anyx). Thie single out put of Set -.\, I is
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called New (of type Set). The names of the inputs and outputs within a
givel Input/output specification must be unique. However, the same names
may be reused in other specifications.

Jhe logical portion of an input/output specification associates a set of
prcc( II(lit ions and postconditions with each plan diagram box. For example,
the Iostconditions of Set-Add state that the New set includes the Input
oblj(-( t, all the elements of the Old set, and no others. The logical sublanguage
also includes a hierarchy of types, in which Any is defined as the most general
data type.

01

Test Specifications

The )ox labelled Some in Figure 13 is an example of a test specification. A
test specification is drawn as a rectangular box, in which the bottom part is
divided into two sides labelled "T" and -F". The inputs to a test specification
are just like the inputs to an input/output specification. The outputs of a
test specification are divided into two groups. Those outputs produced when

S .the tcst succeeds are indicated leaving from the side of the bottom labelled
"T"; those outputs produced when the test fails are indicated leaving from r
the side of the bottom labelled "F". For example, Some has two inputs: the
1T mivrse (of type Set) and the Criterion (of type Predicate). The output of
Sorc, which is defined only when the test succeeds, is called Output (of type r
An%-),

As with input/output specifications, the logical portion of a test speci-
fication associates a set of preconditions and postconditions with each plan
diagram box. For example, the postconditions of Some state that the Output
(when it is produced) is a member of the Universe and that the Criterion is
true of it.

Test specifications also include a test condition, which is true if and only
if tlc test succeeds. The test condition of Sonic states that there exists an

element of the ITniverse such that the Criterion is true. (The generalization of
t st specifications to 7 mutually exclusive test conditions is straightforward.)

Join Specifications

'll mox labelled .Join in Figure 13 is an example of a join specification. A.
join specification is drawn as a rectangular box with the top part dividled int1o .

two s i(es labelled "T'" and "F". Inpuls to a join specilication are indi( "cd

'. "1:. a
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303

minuend.-number subtrahend:number

difference 
I

I subtract:
output.:number difference]

input :number I
absolute-value normalize: -

output:number

Compare
ureaterum er sserm:number dss-fthan

=TIM Fequality-within- tolerance

Figure 14. The three input/output and test specifications ilustrated at the left

of the figure are combined using data flow to construct the pln (ilagralin at the
right. Equalty-Within-Tolerance checks whether two quantitis are emal al ziehin
some tolerance.
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entering the top of the box; outputs leaving from the bottom. Join specifi-
cations are used to end conditional blocks begun by test specifications. The
inputs to a join specification are grouped similarly to the outputs of a test
specification. The inputs on either the "T" or the "F" side are consumed
only when the corresponding branch of the conditional block is executed.
The output of a join specification is always the same as whichever input is
consumed.

The join specification in Figure 13 has one input on each side and one
output. Other join specifications may have several-but the same number
of--inputs on each side, and on the output. (Join specifications can be
generalized to n mututally exclusive cases analogously to test specifications.)

Unlike input/output and test specifications, join specifications do not
correspond to any real computation in the final program. Rather, they are
a technical artifact used in well-formed plans to specify which data is made
availble for further computation, depending on which branch of a conditional
is executed. For example, the logical conditions associated with Join state
that the Output is equal to the True-Input when the "T" case holds, or the

k.19 False-Input when the "F" case holds.

Data Flow

Input/output specifications, test specifications and join specifications are
corinectcd together to form plan diagrams using two kinds of structural con-
si raiiits.

The first kind of structural constraint is data flow. Data flow is shown
in plan diagrams by a solid arrow connecting an output of one box with an
input of another. Data flow arcs may fan out (i.e., there may be several arcs
originating at a given output), but may not fan in (i.e., there may be only
one arc terminating at a given input). No directed cycles are allowed (loops
are represented using tail recursion, as described below.)

Figure 14 shows a simple plan diagram, Equality-Within-Tolerance, con-
structed using data flow. Equality-Within-Tolerance checks whether two
quantities are equal, wit hin some tolerance. Each box in a plan has a unique
name, so that multiple occurrences of boxes of the same type may be re- '
ferred to unambiguously. These names are called the roles of the plan. The
roles of the plan Equality-Within-Tolerance are Subtract (of type Difference),
Normalize (of type Absolute-Value), and Compare (of type Less-Than). To
reII(e clhii r lit plan diagrains, the names and type restrictions of the in-
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(LET (X (A...))

CD (B X) (C x))

BC

(LET* MC (A ... )
(Y (C X)))

D (D (B X) Y))
D1

Figure 15. In the plan diagram at the left, data flow only partially constrains;
the order of steps in the compuitation. Both versions of the code at~ the right are ~ ~
allowed by this plan. ~

Figure 16. An example ofa plan with a data flow constraint in %v6ih two inpiit,
are "wired together."
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puts and outputs of boxes are usually omitted, since they can be found by
reference to the definition of the box type.

Data flow constraints in plan diagrams are an abstraction of the various
different mechanisms by which the flow of data can be achieved in different
programs and it different languages. These mechanisms include nesting of
expressions, use of intermediate variables, and special forms. For example,
in the following Lisp code for Equality-Within-Tolerance, all the data flow is
achieved by nesting.

(< (ABS (- . ..... )) ... )

The same data flow could also be coded using an intermediate variable,

(LET (MX C-......

(< (ABS X) ... )))

or a combination of nesting, an intermediate variable, and a special form.

(LET (MY (PROG ...

W(0 (RETURN (ABS C-......
(< Y .. ) ,,M

Data flow constraints also provide another kind of abstraction of program
text: Any order of steps is allowed in the final program, as long as it is
compatible with (i.e., is a completion of) the partial order specified by the
data flow (and the control flow--see the following section). An example of a
partially-ordered plan and two final programs is shown in Figure 15.

A slightly different kind of structural feature which can also be thought
as a data flow constraint is illustrated in Figure 16. In this plan, the inputs
to A and B are "wired together." What this means is that when this plan
is combined with other plans, the data flow to A and B must come from the
same output. This feature also appears in Figure 11 earlier in this section. ,t

Control Flow

The second kind of structural constraint in plans is control flow. Control flow
is shown in plan diagrams by a cross-hatched arrow between an exit point
of one box and an entry point of another. Input/output specifications have
a single entry point (at the top of the box) and a single exit point (at the

bottom of the box). Test specifications have a sii:gle entry point (at the top

t ,, dl" ./' ,/' 4"3'', '. '' 'd' ,€' '. -". '.g'.' d'' ".''. ' , " ." ' . . " r €../ ." ." /" " - .r €" - .".," ." W -" " ,€ , t . -. r - . .t
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if:negative

T F

then:negate

T F

en djoin .

comp u te-a bsolu te- value

Figure 17. A plan diagram illustrating control flow and data flow. Compute-

Absolute-Value computes the absolute value of a number.

of the box) and two exit points (one on each side of the bottonl of the box).
Join specifications have two entry )oilts (one on each side of the top (f t le
box) and one exit point (at the bottom of the box). Control flo,, arcs ,may
both fan in and fan out. No directed cycles are allowed.

Figure 17 shows a simple plan diagram, Conpute-Ab~solute-Value, con-
structed using control flow and data flow. Coml)ute-Asolute-\'aln coil-
putes the absolute value of a number by negating it if necessar.

It is important to note the distinction being made here between .\ ,h,lutv-
Value and Compute-Absolute-Value. Absolute-Value is an input ,'tut p.'

4-,-. %.'4
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(PROGN
(A)

(B)
(C)
(D))

FB C

a (PROGN
(A)
(C)
(B)

V (D))

Figure 18. In the plan diagram at the left, control flow only partially constrains
the order of steps in the computation. Both versions of the code at the right are

~* allowed by this plan.

A A
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a.

specification (used, for example, in the plan Equality-X\ithin-Toleran(e in r
Figure 14), which has the postcondition that the output is the absolute value 0
of the input. Compute-Absolute-Value is a plan (combination of steps) which
implements this specification. In general, there may be several differentl plai i"
which implement a given specification. The notion of a plan inp~leenti_,., t.
specification is captured in overlays, a feature of the Plan Calculus described
below.

Control flow constraints in plan diagrams are an abstraction of t he various,
different mechanisms by which the flow of control can be achieved in different
programs and in different languages. These mechanisms include nesting of
expressions, sequencing primitives, and special forms. For example, in the
following Lisp code for Compute-Absolute-Value, the necessary control flow
is achieved using the special form IF.

(IF (MINUSP X)
(SETQ X (- x)))

The same control flow is achieved in a more complicated way in the following %
code through the interaction of the special forms COND, PROG and RETURN.

(PROG ...
(COND ((MINUSP X) ... )

(T (RETURN)))
(SETQ X (- X)))

Like data flow, control flow constraints also provide a partial-order ab-
straction of program text. Conventional programming languages do not dis- %d.
tinguish between the necessary orderings between program steps and those .
that are chosen arbitrarily. In the Plan Calculus, any order of steps is allowed
in the final program, as long as it is compatible with (i.e., is a comrhplti,,0 S
of) the partial order specified by the data an(1 control flow. "lns a (,,tI ".
flow arc between box A and box B in a plan diagram (toes not ieanm that H"
imuediately follows A, but rather than B eventuallv follows A. An (exaImlle
of a plan partially-ordered by control flow and two possible final prograns m.

shown in Figure 18. Ito
Unlike data flow, control flow constraints are transitive. For example,. the .

two plan diagrams in Figure 19 have the same meaning, (lespite the fact that1
they have different syntax. This is an undesirable lack of cainonicalhess in
the structural part of the Plan Calculus. which has been ha1(lcd 1,y building

' -; " "

'%
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knowledge of transitivity into the programs which manipulate the diagrams.

(See Section 4 for a discussion of other approaches to fixing this problem.)
Finally, note that notion of control flow used here has a different flavor

from the notion used in typical flowchart languages. In the Plan Calculus,
a control flow arc is a constraint on possible execution orders, whereas in a
typical flowchart language, a control flow arc is more like an abstract "jump"
instruction.

3.4 A Parallel Execution Model for Plan Diagrams

The meaning of a plan diagram is defined formally as the set of computa-
tion sequences it allows (see [40, 41, 42]). A useful intuitive model for plan
diagrams, however, is to imagine their direct execution as parallel dataflow
programs. This section describes a set of rules for executing plan diagrams.
A symbolic interpreter for plan diagrams along these lines was implemented
by Shrobe [53].."

Basically, plan diagrams are executed by having "tokens" flow between
boxes along the data and control flow arcs in a plan. Boxes consume tokens
at the top and produce tokens at the bottom. The tokens that flow along
data flow arcs are symbolic objects with the appropriate properties. The
tokens that flow along control flow arcs are only for controlling conditional
execution, and have no other properties. Each box has a buffer for each
input, where data tokens wait until they are consumed, and a counter for
each entry point, which counts how many control tokens have arrived.

Execution begins by inserting tokens representing the starting data into
the input buffers of the data flow sources of the diagram, i.e., the inputs
of boxes that have no incoming data flow arcs. Execution then proceeds in
parallel according to the activation rules for each kind of box.

An input/output specification is activated when a token has arrived at
each of its incoming arcs, i.e., when there is a data token waiting in each of
its input buffers, and the entry point has counted a control token for each
incoming control flow arc. (If there are no incoming control flow arcs, then
this part of the condition is satisfied vacuously.)6

6 Notice that there is a slight asymmetry here between data flow and control flow.
Incoming control flow arcs fan-in at a single entry point, whereas each data input is
allowed only a single incoming data flow arc. Another way of thinking of this, which
resolves the asymmetry, is to consider each incoming control flow arc to have a separate

a-
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(2)

(1), I 'P

(3) (4) -, I

I .

ip)

Figure 20. An exam ple of executing the plan diagrain for Co nmim ie-:\ hle(l t,.''
Value (see Figure 17) according to the parallel execution model. The large, -;))Id
circles represent data and control tokens flowing along arcs. Activated boxe, arv,"
indicated in bold. The example continues in ig re 21.-.
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When an input/output specification is activated, if the inpit data sat-
isfies the preconditions of the specification, then output data 5itfv'ini tl!,.
postconditions is produced at each output, and a control token i- produced
the exit point. If the input data does not satisfy the l)reconditiOns. exc, i,

terminates abnormally.
When tokens are produced at an output or exit point, they are piopagal,,l

along the data flow and control flow arcs to the input buffers and entrv Pl1,1
counters of the connected boxes. Where there is fan-out of data flow arc-.
the intuitive model is that multiple pointers to the same data are created. a,
opposed to multiple copies. (This is to allow modelling of side eiffecs st.,
below.) Where there is fan-out of control flow arcs, it doesn't matt or whnt iwr

J '  you copy or create multiple pointers, since control tokens have no disiilelc
properties.

A test specification is activated the same way as an input/output speci-
fication. If the input data does not satisfy the preconditions of the specifica-
tion, execution is terminated abnormally. If the input data does satisfy the
preconditions and the test condition is true. then output data and a coilt r(!
token are produced on the "T" side of the box; otherwise outlput data ald a
control token are produced on the "F" side of the box.

A join specification is activated when tokens are present at all of the
incoming arcs of one or the other side of the box. X'ien this occurs, a
control token is produced at the exit point, and the appropria te data tokenls
are passed through to the corresponding outputs.

Figures 20 and 21 show an example execution of the Con l)ute-Absolilt(-
Value plan.

A few points are worth noting about, this execution model. First, thle
purpose of the model is to provide intuition into the nieaning of thie diigrais,
not to providea formal foundation. For example, to forilally prove prolpert ins
of plans (such as whether a given plan terrimiiates normally for aIl possil he
inputs) requires manipulating the logical sublanguage of the preconditions,
postconditions, and test conditions, whiich is outsid( of t his ('x(',lltion ,11odl.

Second, this execution model is particularly easy to visuialize, bvca u.s(e
there are no cycles in the control flow or data flow. 'Tli is does not. however.
allow for looping computations. The next section introduc(.es hierarchical
and recursively defined plans, which are used to model loops a li recursive
"control flow input," (The way control flow fan-in is typially drawn in lan diiagrahi i-

suggests this view.) This view, 'however, has the undesirable proprty that Hit, numtber i i f
control flow inputs is not fixed for a given type of box, but tdo nrlds on Ih, c,iiitext 11 11.

I.*
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computations generally.

Finally, note that the Plan Calculus is a wide-spectrum language (this
point will be discussed further in Section 4). Depending on how specific the
input data is, and whether the steps of the plan are totally ordered, executing
a plan can range from being equivalent to executing a conventional program,
to being the symbolic evaluation of a specification.

3.5 Hierarchical Plans

The type of a role in a plan, in addition to being an atomic element (an
input/output, test, or join specification), may also be a plan. This makes it
possible to reuse already defined clichs to build larger clichs in a hierarchical '.

fashion. For example, Figure 22 shows the plan Approx-and-Retry-Sqrt,
which has the plan Equality-Within-Tolerance (defined earlier in Figure 14) "-

as one of its subplans. Approx-and-Retry-Sqrt is a somewhat contrived plan
that computes the square root of a number using an approximation operation
and retries the approximation only once if necessary.

Note that the square-root approximation operation (Approx-Sqrt) in Fig- a'

ure 22 has an extra input (Limit) specifying the maximum number of steps
to be used in the approximation. If the result of the operation is not within
tolerance (Check), the iteration limit is increased (Increase) and the approx-
iniation is tried again (Retry). The role Check is itself a plan, Equality-
Within-Tolerance, with roles Subtract, Normalize and Compare. Note that
the formula used to compute the new, increased limit from the old limit and
the absolute value of the error is not specified in this diagram.

Within hierarchical plans, it is convenient to refer to parts at different
levels in the structure by composing role names into paths. For example, in
the plan Approx-and-Retry-Sqrt, the path Approx.Limit refers to the Limit
input of the Approx role. Similarly, Check.Compare.Lesser refers to the
Lesser input to the Compare role of the Check role.

Notice in Figure 22 that a dashed box is drawn around the parts of a
siibplan. This boundary is not, however, a barrier to establishing connec-
lions between the parts of the sibplan and the surrounding plan. Inputs

to ilterinediate steps of a subplan can be provided from the surrounding
plan and internwdiate results can be 'tapped." For example, note the data

flow connection between the output of Check.Normalize and the input of the

Increase ste p .

'.1
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L4

equality-
within- I subtract:

tolerance differencer

normalize:

T F

approx-andreory-sqt

approxand-rery-sar

Figure 22. An exa ni ple of a hiiera rchical phi a.
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sequeuec nence integer

make-indexed-
sequence

o u tp u tHn dexed-sequence

old. indexed-sequence input :sequence inp utin dexed-seq uence

alter-indexed- select-indexed-
sequence-base sequence-base

newin dexed-sequence ou tpu t~sequence

old:in dexed-sequence inp ut:integer input :ndexed-sequezice

alter-indexed- select-indexed-
[sequence-index Lsequence-index 4

newindexed-sequence output:integer

Figure 23. An example of a data plan and the corresponding accessors. The
accessors are implicitly defined as part of the definition of the data plan.
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old:indexed-sequence

I base: index:
*sequence integer

bump:
oneplus

update:
new- term

A ." . .

* ----- A-

I base: ndex:
sequence integer

new:indexed-sequen ce

bump-and-update

Figure 24. An example of a hierarchical plan with a mixt ure of data and ('fcoINia-

tion roles. The plan Bump-and-Update captures the clich6d pattern ()f operaiis
on an indexed sequence in which the index is incremented (Bump) and a new ,,rmi

is stored (Update).

45,4.
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old:in dexed-seq uence

old-bae oldindex

selecselet-inexed

sequ squenc-inde

bump:

n Ow.

make: -

mnake-in dexed-
sequence

newincxd-sequencc

bump-and- update

Figure 25. An equivalent version of Bump-and-Update (see Figure 24). in which
explicit accessors have been used instead of using data plans.%

We:
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Data Plans

The type of a role in a plan can also be a primitive data t\ p\. such as
Integer, Sequence, or Set. A plan all of whose roles are data types (or hierar-
chically, data plans) is called a data plan. Data plans are used to represent
standard data structure aggregations which appear in the inpleniei.'ai, "
of more abstract data types. For example, Figure 23 shows the data plan
Indexed-Sequence, which represents the common clich6 of a sequence (Bate)
with an associated index pointer (Index). The Base is typically implemented
more concretely as an array. This data plan is, for instance, part of many
implementations of buffers, queues, and stacks.

The logical portion of a data plan associates an invariant with the data
aggregation. For example, the invariant of Indexed-Sequence states that the
Index must be greater than or equal to zero and less than or equal to the
length of the Base.

The definition of a data plan, such as Indexed-Sequence, automatically
defines a corresponding collection of input/output specifications for the stan-
dard data structure accessors: 's

* A constructor, which takes an instance of the appropriate type for each -

of the roles, and produces a new instance of the data plan with those
parts. A precondition of this operation is that the inputs satisfy the
invariant of the data plan.

* A selector for each role, which takes an instance of the data plan. ad 11-

returns the corresponding part.

* An alterant for each role, which take an instance of the data plan and an
instance of the appropriate type for the role, and destructively roodifies
the instance of the data plan by replacing the corresponding part with
the new part. A precondition of this operation is that the new part
together with the old parts for the other roles satisfy the invariant of
the data plan.

The naming conventions for these accessors, their inputs, and their out puts.
are illustrated in Figure 23.

Implicit Accessors
j*

In general, a hierarchical plan may have a mixture of data and comiputli1on
roles. Figure 24 shows an example of a hierarchical plan. llUnp-anl-I ,,,.

o

V".%

,0 •°

U. ,,""2''-£'''. .% .- -- .- - .. ."% .a.- If I' % ,'%'."' , ; , '' , - , ' . ' ," "--- . . "- ',- -,'''''."- ''''',". '.- ' ,-.-



U p

FF

.J.

IlIERAIRCIIICAL PLANS 47,

-.!

..... ma..

S- make-D

.select-D-X

Figure 26. For a data plan, D, with roles .... X ... this figure shows how each

possible arrangement of data flow to a single role (on the left) is translated into
explicit accessors (on the right). See Figure 27 for more general case. .

j. ... ,:
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make-D

s ect-D-X

age :select-D.X select-D- Y

L

a".... t .

L
select-D-X select-D-Y

~x

Figure 27. For a data plan, D, with roles .... X, .... this figur, shows
how various combinations of data flow to rflhItiple roles (oii the lft) is traisntI,,d

into explicit accessors (on the right). See Figure 26 for sinipler (c,,es.

p
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,'

which has the data plan Indexed-Sequence as a subplan (twice). This plan
expresses the clich6d pattern of operations on an indexed sequence in which
the index is incremented and a new term is stored at that location in the %

sequence, as for example, in the following code: L

(DEFSTRUCT INDEXED-SEQUENCE BASE INDEX)

(LET ((I (1+ (INDEXED-SEQUENCE-INDEX Q))) '4

(S (COPY-SEQ (INDEXED-SEQUENCE-BASE Q))))
(SETF (ELT S I) ITEM)
(MAKE-INDEXED-SEQUENCE :BASE S :INDEX I))

Notice that the Bump-and-Update plan is purely functional, i.e., there are
no side effects. New-Term (the type of the Update step) is a predefined in-
put/output specification associated with the primitive data type Sequence-
it returns a copy of the input sequence, with one term changed. Since there
is no sequence primitive in Lisp corresponding to New-Term, the code above
uses a combination of COPY-SEQ and SETF of ELT to implement this operation.
A related version of this plan which uses side effects is discussed below.

Notice also that the selector and constructor operations in the code above
for Bump-and-Update do not appear explicitly as boxes in the plan diagram.
It is a convenient feature of plan diagrams that these accessors are implicit in
the way data flow is connected to the roles of a data plan. For example, the
version of Bump-and-Update in Figure 24 can be taken as an abbreviation
for the version in Figure 25, in which the accessors are made explicit. The
general rules for interpreting data flow involving data plans are illustrated in
Figures 26 and 27.

3.6 Side Effects

Side effects are modelled in the Plan Calculus by introducing input/output
specifications which destructively modify their inputs. For example, the de-
structive version of New-Term, called Alter-Term, has the same input and
outlput roles as New-Terni. Its postconditions, however, specify that the Old
sequence is destructively modified to obtain the New sequence. (The formal
statement of this condition involves using a situational calculus for modelling
nutable objects-see [41, 42, 40].)

Figure 28 shows an example of a plan, called Destructive-Bump-and-
'pldtte, involving side effects. This plan is the more common, destructive

• .

".
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old:indexed-sequcnce

od-base: 
old-index:

select-in dexred- sele¢ t-in dexed-

sequence- base sequence-index,!'

sSdbump:
. . oneplus

',U

a ," .update:
" alter-term

make:

alter-indexed-
sequence-index

ncw:in dexed-seq uon cc

destructive- bump-and- update

Figure 28. The destructive versioii of Bimlp-aii(J-171)(ime.
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version of Bump-and-Update, corresponding to the code below. (Cross-
referencing between the destructive and non-destructive versions of speci-
fications and plans is part of the library structure [39].)

(LET ((I (1+ (INDEXED-SEQUENCE-INDEX Q))))
(SETF (ELT (INDEXED-SEQUENCE-BASE Q) I) ITEM)
(SETF (INDEXED-SEQUENCE-INDEX Q) I))

Notice that the plan diagram for Destructive-Bump-and-Update has ex-
plicit accessors, such as Alter-Indexed-Sequence-Index, for the parts of the
indexed sequence. The abbreviated data flow notation for data plans de-
scribed above cannot be used in plans with side effects because the correct
expansion of the abbreviations in the presence of side effects requires non-
local reasoning. For example, in Destructive-Bump-and-Update, there is no
alterant for the Base of the indexed sequence, because the destructive mod-
ification of the sequence in the Update (Alter-Term) step also achieves a
destructive modification of the whole indexed sequence of which it is a part.

In the Plan Calculus, side effects arise only in connection with the de-
.'.*,. structive modification of arrays, records, and other mutable data structures.

Most of the side effects in conventional programming languages, namely as-
signinent statements, are replaced by the use of data flow in the Plan Calcu-
his. (An exception is the use of global variables, whose current value is best
thought of as part of the state of the system. These are modelled using the
primitive mutable data plan, Cell, which has a single role, called Contents.)

In general, reasoning about side effects can be quite complex, especially
if' niitable objects may overlap (see [53, 54]).

3.7 Recursively Defined Plans

llierarchical plans can be recursively defined. i.e., the type of one or more
of the subplans can be the same as the type of the plan. For example,
Figure 29 shows t lie recursive data plan defining the standard list and binary
I ree abstractions.

lRecursive comiputat ions are also represented using recursive plan defi-
nitions. For example, Figure 30 shows the recursively defined plan, called
flint e-Entimneration, for enumerating (visiting every node of) a binary tree.
In the usual Lisp implementation of binary trees as cons cells, the following
code is an iiplhfenientation of this plan.

5,.
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(DEFUN ENUMERATE (TREE) p

(UNLESS (ATOM TREE)

(ENUMERATE (CAR TREE))
(ENUMERATE (CDR TREE))))

Notice, however, that this code makes an ordering commitment that i-.
not required by the Bintree-Enumeration plan. In this code, the noes of
the tree are walked in left-to-right order (assuming CAR corresponds to Left
and CDR to right). The Bintree-Enumeration plan is more general-it does V
not force the traversal to occur in any particular order. An advantage oft lie 'p
Plan Calculus over conventional program text is that it allows the expression
of more general cliches, such as this. Furthermore, to constrain the Bintree-

Generation plan to the traversal order used in the code above, all that is
required is to add a control flow arc from Continue-Left.End to Continue-
Right.Exit•

tail:list U null

10 .. WS

list

left:bintree U atom right:bintree U a torn
r-------r------

II I, -
I. .I I .. I -: -

I I .--- - - - -

bintree

Figure 29. Two examples of recursively defined data plans. Note th use of
disjunctive types. %

N
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0

exit :tst-at am

F T ..

+
bump-left: bump-right:

select-bintree- select-bintree-
left right

continue-left: - - f- - flcontinue-right:
hint ree- Ibintree-

* enumeration I Jenumeration

F
-en T

I jin

bin tree- en umera tion

Figure 30. The recuirsive, definlition of the plan for enumnerating a binary tree.
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111
exit:test -null

F T

bump: selec t:

select-list-tail select-list-head

continue:
list-enumeration -

IIL ] S

I I•S%

F T-7:"

end~join

list-enumeration

Figure 31. Iterative (tail-recursive) plan for l iu'erat igii ; list.
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Iterative Computations

Iterative computations are represented in the Plan Calculus by recursively
defined plans. For example, Figure 31 shows the plan for enumerating the el-
ements of a list. In the standard implementation of lists in Lisp, the following '

code is an implementation of this plan.

(LOOP
(IF (NULL L) (RETURN))
... (CAR L) ...
(SETQ L (CDR L)))

This is the familiar CAR, CDR, NULL clich6 that appears in several different
syntactic forms in the hash table example of Section 2. This clich6 can
alternatively be coded in the following recursive form, which mirrors more
closely the structure of the plan in Figure 31.

(DEFUN ENUMERATE (L)
(WHEN L 

%

(CAR L)
(ENUMERATE (CDR L))))

The two versions of the code above are computationally equivalent. In

both cases, the amount of memory used in the computation does not need to %
grow with each repetition of the body. (It is a defect of some compilers and .
interpreters that these two versions are not executed in the same way.) A
recursive definition that corresponds to an iterative computation is often re-

ferred to as tail-recursive. Although iterative computations are often loosely
referred to as "loops", the essential characteristic of iteration is not the ex-

istence of a cycle in control flow, but rather, the fixed space requirements of

tlie cornputation. 7

The difference between a singly-recursive plan that gives rise to an iter- :%
ative computation, and one that gives rise to a recursive computation has
to do with whether there are any operations to be performed "on the way
tip", i.e., after the recursive invocation. This point can be illustrated by
comparing plans for the recursive versus iterative computation of factorial,

A plan for the recursive computation of factorial is shown in Figure 32.

This plan corresponds to the following code.

7For a further discussion of the relationship between iteration, recursive definition, and
Iooping constructs, see [1], pp. 32-33.

.. $,
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Itest :equal-onel
IF T

bump:
on eminus

continue:7 - - 'I

recursive-I
factorial I%

I I T

recursive-factorial

Figure 32. Linear recursive plan for the conijputation of factorild.
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+ t

bump: accumulate:
oneminus times

continue:- - - 1
iterative-factorial- I

body

I FI

iterative-fa ctorial- body

Figure 33. Iterative (tail-recursive) plan for the computation of factorial. Note
,.. that an auxiliary plan definition (not shown here) is required to specify initializa-

tion of the accumulated product to 1.
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(DEFUN FACT (N)

(IF (=N 1)

1 -p

(* N (FACT (1- N)))))

Note that the multiplication (Accumulate) step in this plan require, 101)0

from the end of the recursive invocation, and therefore must come after tlie

recursion. This computation is not iterative, but linear recursiV .-- 1e,1orv
grows linearly with the number of repetitions of the body.

A tail-recursive plan for the iterative computation of factorial is sliowii
in Figure 33. This plan corresponds to the following recursive defillitioni.

(DEFUN FACT-ITER (N F)

(IF (= N i)
F
(FACT-ITER (I- N) (* N F))))

Factorial of n is computed by calling FACT-ITER with the accutmulated prodluct
(F) initialized to 1.

(DEFUN FACT (N)
(FACT-ITER N 1))

This can alternatively be coded as a loop, as follows.

(DEFUN FACT (N)
(LET ((F 1))

(LOOP
(IF (= N 1) (RETURN F))

(SETQ N (1- N))
(SETQ F (* N F)))))

Notice that in the plan in Figure 33 there are no coinmpuations to Ie per-
fornied after the recursive nevocations. (Joins do niot ciiut co( p1 ol a tio. .'i.

but are really part of the data and control flow consLrain! s.)

Another example of a tail-recursive 1)1,111 is the ,iviear-Se Ircli i,[tiI I

Figure 11, which captures the linear search clicha, use',l iII I l 1e has1 tilh

example. A taxonomiy of iterative clich6s has been developed v Vaters [

al'd elaborate(l by lih [39].

N
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3.8 Overlays

Programming knowledge includes understanding many kinds of relationships
between p)lans. One important kind of relationship is how an instance of
one plan can be viewed as an instance of another. Overlays are the general
facility in the Plan Calculus for representing such shifts of viewpoint. Ex-
amp~les of overlays given below capture the common programming notions of
implementing a specification, data abstraction, and optimization.

Implerrenting a Specification

F.igure 34 is an example of a simple overlay representing implementation
knowledge. The right side of the diagram is the Absolute-Value input/output7
specification. The left side of the diagram is the plan, Compute-Absolute-
Value, which tests whether a number is negative and, if so, negates it. This
overlay represents the fact that the Compute- Absolute- Value plan is a correct
impllementation of the Absolute-Value specification. (A statement of the cor-
rect ness conditions is given below.) Notice the distinction being made here
betw;een the specification for absolute value, and one way of computing it,

even though these two are very close in this example. Although Compute-
Absolute-Value is the most obvious way of implementing Absolute-Value,
Itlere are other possible ways-for example, squaring the number and then
taking; the square root. Each way of implementing Absolute-Value is repre-
sented~ by a different overlay, all of which have the same right side.

In addition to a left and right side, an overlay diagram also includes a
set of hooked lines, called correspondences, which identify the corresponding
objects in the two points of view.' In Figure 34, for example, the correspon-
dences identify the input of the absolute value specification with the input
of thle test of the implementation plan, and the output of the absolute value

speifcatonwith the output of the join of the implementation plan.

Formally, an overlay defines a mapping from the set of instances of the
left side plan (the domain) to the set of instances of the right side plan
(thie range). There may be different overlays with the same domain and/or
range. In order to be correct, the mapping defined by an overlay must be
single-valued, total and onto.9

d -flie idea of correspondences was stimulated in part. by Sussman's "slices" [57], which
lie uised to represent. equivalences between electronic circuits.

Maiipping is Onto if[ each element of the range is the image of some element of thle
*1%

.%s *~it



60 'THE PLAN, CALCULI'
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absolu te-valuie-ixplementationi

Figure 34. Overlay for an implementation of absolute value hY tcstir'g mdr(
negating.
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The single-valued condition guarantees that the implementation process
loses no information, i.e., for a given overlay, the specification can always be
recovere(d from the implenmentation. The mapping may. however, be man-
to-one, so that the implementation typically is not uniquely dtermined by
the specification.

Ilie total condition guarantees that each implementation instance corr'-
spomds to some specification. (Typically, this is achieved by restricting the
doilliin of the overlay until this condition is satisfied.)

Fiinally, the onto condition guarantees that each specification is impl,,-
ient a ble.

The logical sublanguage and the formal semantics of the Plan Calculus
provide the basis, in principle, to formally verify all of the overlays described
iii this paper. An automated proof system which can he used for this task has
,cen implemented by Feldmain and Rich [44, 15). Thus far, however, these

)IImdit ions have only been used as an intuitive guide to writing overlays.

Using Overlays in Analysis and Synthesis

iThe knowledge encoded in an overlay can be used in both analysis and syn-
thesis of programs. In analysis by inspection, the left side of an overlay is
matched against the plan representation of the program under analysis. If
a match is found, then the part of the plan matching the left side of the
overlay can be replaced by the right side of the overlay. The correspondence's
provide the information needed to connect the right side of the overlay with
the appropriate parts of the surrounding plan. (See example in Figure 35.)

The repeated application of this recognition process can be thought of
as it kind of parsing, where each overlay defines a grammar rule. (The sides
are reversed: The right side of the overlay corresponds to the reduced side of
the grammar rule; the left side of the overlay corresponds to the expansion
of the rule.) Note that this grammar will typically be ambiguous,10 because
there may be several overlays wit h the same left side, and also because the
parts of a plan may often be grouped in several different ways. Wills [G3]
has constructed an autoinated system which performs analysis by inspection
islig a graph-parsing approach.

"'A gramimnar is an ibigtios [if some sentenices ill the language do not have a unique

'Ii.
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Figure 35. The examiple overlay at the top of t ic figure is, S11it 11 ii i,_ II- III
analysis and synthesis. In analy'sis by inspection, the left side fuf cv i

recognizedI in the larger plan at the lowe'r left of the figure. Thie pari t Jilw !B-
plan matcinxg the left side of the overlay is highlighted ini hold. It Is rcjda1 t(c 1,\ 4

lie right side of the overlay as shown. bi synthesis by in."peci C is pn '

reversed.
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Figure 36. Ain example of matching a plan in which copying is required before
rtlil;Jcemnt. The part of thle larger plan matching the left side of the overlay
iii Figure 35 is highlightedl ini bold. Notice that A is copied first, andi then thle

mii ac le(' part of the plani is rep)laced by the right side or t he overlay.
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In synthesis by inspection, the right side of an overlay is matc!wd ag

the plan representation of the current synthesis state. If the !igli i ,
the overlay is a single box, as in the case of implementation o',, la';.,
this is trivial. We will see below that the right side can also 6e a p,.
The part of the plan matching the right side of the overlay is r-I.i!.,
the left side of the overlay, again using the correspondences to get the right
connections. (See Figure 35.) In the grammar metaphor, svnthes, v ;,
spection corresponds to running the same grammar as a generator. A , syt-ii
which supports a kind of synthesis by inspection has been impleilielt,, t1v
Waters [61].

Note that in the process of matching and replacement, parts of dit
matched plan may need to be copied before replacement is made. Tl:e p;rt:
of the matched plan that need to be copied are any operations or tests wxliose
output has data flow going outside the matched area. and for which there is

no corresponding output on the other side of the overlay. Figure 36 sliows ail

example of when copying is required in the use of an overlay in analysis I,\
inspection. The same copying would be required in the synthesis direct ion it'
the same plan were the right side of another overlay.

Data Abstraction

Data abstraction is represented in the Plan Calculus by overlays between
data plans. The data plan on the left side of the overlay is what is typialiv
called the concrete (or implementation, or represcitation) data iy1": 111e
data plan on the right side of the overlay is the abstract dala type. .\s wiII]
overlays in general, a data overlay must define a single-val'ied, total a lt ,wo

mapping from instances of the concrete data type to instances of the a l,>t 'i
data type. This nmapping is typically called the abstraction fu ntim i in I
data abstraction literature (e.g., [30]).

Only the domain and range types of a data overlay can he itate
in plan diagrams. The definition of the abstraction fuiict on r(J't.I,'- ti,,
logical/mathenatical sublanguage. For example, Figure 37 slitw, ili ,
overlay, Indexed-Sequence-as-List, which represents one wav of ipnlhi ,iii ill
a list using an indexed sequence. The abstraction fuiction fr Iiij,,.,
Sequence-as-List is defined as follows: Tlie head of t lw list cour,,sp l,,
the tern of the base sequence itthexed 1, ,v the i,dex. Ile tail of t]i li-I
is recursively defined as the list implernen ted by the indexed s.(ul, hnce wili
' same sequence and one nlinus the index. The eriptv list (nil) co,>fI,,,ii I,,

DW
%I %



I ~I

O VE R LAI'S 65

I"

II

tail:1ist Li null

indexed-se quence lis t

in dexed-sequence-as-list

Figure 37. An example of implementation knowledge involving data abstraction.
The (lata overlay, Indexed-Sequence-as- List, specifies how to implement a list using
a sequence and an index. Only the domain and range are indicated in the plan
diagram.

the indexed sequence with index zero.

Data overlays are typically used to define other overlays. For example,
Figure 38 shows the definition of an overlay which describes how to imple-

rint the Push'' operation on a list, when the list is implemented as an
indexed sequence (according to Indexed-Sequence-as-List). The left side of

this overlay is the Bump-and-Update plan introduced earlier. In this irn-
plementation, the Old and New indexed sequences of the Bump-and-Update

plan correspond to the Old and New lists of Push, respectively." The object
which becomes the new term in Buinp-and-Update corresponds to the object

being pushed onto the list.
Notice that two of the correspondences in the diagram for Bump-and-

Update-as-Push in Figure 38 are annotated with the name of the data over-

lay Indexed-Sequetce-as-List. This means that the Old indexed sequence
of liinimp-and- pdate viewed as a list according to Indexed-Sequence-as-List
corresponds to the Old input of Push, and similarly for the New roles. This

" 'l'e postconditios of Push state that the head of the New list is equal to the Input,
Mnil ilw tail of the New list is equal to lie Old list..

1'2{ ecall that the plan diagrami shown for 1Hump-and-Update in Figure 38 is actually
al al,breviatmu for Ili(- version with explict, accessors shown in Figure 25. \'ithI explicit
;w(c,. ors on the left side of overlay, tle correspondence involving t lie Old ildexed sequence
woul! connect to the input to the selectors at the top of the plan; the correspondence
involvin tlie Now indexed sequence would connect to output of the constructor at the
I L~i ill.

-o',/- "
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old:in dexed-seq uence

base: index:
sequence integer

indexed-sequence-as- list

Inpu old:list input:anyv

I base: index: indexed-sequence-as- list

seuec inee

new:indexed-seq uen ce

bump-and-update

bunip-and- update-as-push -

Figure 38. The Burnpl-aiid-UpIdate-s-~sItI ovCi1-:1) si)(cifies 11(w 1 i1n1leii14i I

the Push op~eratioi i~ iing the data abstract icniii e S I'1C-> i ( set,'
ure 37).

%
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1,ng convention is q iiite general. Any correspondence can be labelk
\%,till the name of ail function having the appropriate domain and rang
Tliis nealis that this function is applied to the object on the left to o1
lain tle corresponding object on the right. One can think of an unlabell(
(,0r s )( ndeiice as meaning tie identity function.

Notice that using data overlays, the same data abstraction can be impl
liiiied differently ii different contexts; this is awkward in some prograr

Siiially. notice that the implementation knowledge in Figure 38 is f
tlite :iost abstract case, iiamely an unbounded list implemented using
tuill(,unded sequence, without side effects (the input and output lists of Pu
;are iot identical; New-term is the non-destructive operation on sequence
A ,in lib1rary would also include overlays between versions of these plans
-Wiiic 1 Ilie PUisi operation can cause overflow, the base sequence has a fix
l"ierih. and various operations are destructive.

Op~t imizatioii

Tiie most tveieral form of overlay has a non-atomic plan diagram on ea
side. Such overlays are most often used to capture optimization knowled{
For exampl~le. Figurle 39 shows an overlay having to do with optimizing

cita iii pattern of operations on a list. The right side of this overlay is a pl
in which an object is pushed onto a list, the list is sorted, another obj(
is ptushed onto the sorted list, and then it is sorted again. This pattern
operations can be optirmized as shown by the plan on tile left side of t
overlay, in which the first sorting operation is onitted. One can think of t'
oVt(.rit as einodying a small lemma in the theory of lists and sorting.

()ite would not particularly expect a programmer to write code mat(
ii. Ie' right side, of his ovtrlay. Ilowever. paIterns requiring o)timi zati

ii .,sil v arise in li e procetss of auitoillated synthesis, when higher le
,,era! ois are expanded into iliplieientations. For example, a simple i,

ii.eli oii for aIding an object to a sorted list is to push the object onto t
• la idll I llel st t. Two sucli operat ions oil the same sorted list implement
t \ li \, way wol "ie rise to tle pattern on the right side of this overlay.

I iiig an overlay sucli as Figure 39 in the synthesis direction, i.e., niat,
.i I(l,. Iig1 i side anid replaciiiig it by the left side. amounts to applying

oltiu,1iiza ion. t7sing ail overlay such as Figure 39 in the analysis directi,
i,... 'iatrli1g, tIle left side and replacing it, by the right side, amounts

*.-7:
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.iiidui)ing" an optimization. It is often necessary to undo optimizations in
order to facilitate further recognition. %N.

in the grammar metaphor, an overlay with non-atomic plans on both the *

hift and right side corresponds to a context-sensitive grammar rule. Undo-
ing optirnizations as part of recognition is therefore an inherently expensive
prlOCe~ss" ,a,

3.9 Summary

This section summarizes the structural sublanguage of the Plan Calculus
with a formal definition of its syntax. Note that the syntax of plan diagrams
allows plans that are not semantically well-foried, for example, for which
no possible executions exist (see [40, 41, 42] for more on semantics).

We begin with a set of primitive types, which are in the language. These
types provide the primitive data vocabulary, such as Integer, Sequence, and
Set. out of which specifications are built. The primitive type Situation is
used to model control flow and side effects.

0 There are two kinds of composite structures in the language: specifica-
lians and overla vs.

A specification is composed of a labelled tuple and a set of labelled edges.
A labelled tuple is an tuple in which the components are selected by arbitrary
(listimt symbols (labels) instead of numbers. The set of valid labels for
the coniponents of a specification are called its roles. The components of a
sp)ecification are either specifications or primitive types.

'Ihe edges of a specification are pairs of paths in the specification. A path
in it specification, A, is defined recursively as follows:

',

If r is a role of A, then r is a path in A.

If 13 is the component of A selected by r, and p is a path in B,
then r.p is a path in A.

(iven these definitions, the terminology of plan diagrams introduced in
the preceding sections arises out of classifying specifications according to
their components, as follows.

:\ ii))ut/outlut specification is a specification with exactly two Situation
('()1),oli )ents. These are the entry point and exit points roles, which are
I l,,!I. Iv cionv.t ion In anl Out. The remaining roles are partitioned ito

"Z'
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two disjoint subsets, called the inputs arid the outputs. There aif iu
in an input/output specification.

A test specification is a specification with exactly thr-e n tw

ponents. These are the entry point, and the success and falihi cx!!
which are labelled by convention In. Succeed, and Fail. respeIvc
remaining roles are partitioned into three disjoint subsets. called tiw*pu
the success outputs and the failure outputs. There are( no edgis in i n t(

specification.
A data plan is a specification, all of wvhose coiipone(iii. ye ltfey t Vgl

data types (i.e., primitive types other than Situation) or data i 1
are no edges in a data plan.

IA plan (the general case) is a specification. all of whose coniipoiwf! ;1
either input/output specifications, test specifications, piilt ive data ve.
or plans. The edges in a plan are labelled to indicate whether they are co Iit rt)
flow or data flow. Data plans are a special case of plans. 'hie termi to-1n1mnnaI
plan is sometimes used to distinguish plans which are not, data plic.. C..
which include at least one input/output or test specificatilonl.

An overlay is composed of a pair of specifications anid a set. oif lahelle"l
edges. The edges of an overlay are pairs of paths, InI which the fi r.t elment
of each pair is a path in thle first specification and( lie s(cut Id etli ent of cac Ii
pair is a, path in the second specification. The edlges of the uvra e cal !e I
correspondences, and are labelled withI thle i e of thle funiction usdto t in p

ob~jects from the left side to thle right side of thle overlay.

"I.
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4 Conclusion

This section discusses the relationships between the Plan Calculus and other
fornalisms, reviews some of the limitations of the Plan Calculus, and sum-

ill1irizes further work to be done.

4.1 Relation to Programming Languages

A often asked question is: Is the Plan Calculus (just) another (very high
lcvel) programminrig language? As with many such questions, the heart of
the answer lies in defining the terms. In this case, it depends just what is

neait bv "programiling language." Modern programming languages have
t wo (' Sential purposes:

* To describe computations precisely enough to be executed by a ma-
chine.

* To serve as a communication medium between program writers and

6,l. human readers.

In contrast, the two essential purposes of the Plan Calculus are:

* To describe programming clich&s in a canonical, easy to combine, and
language-independent form. .

* To serve as a medium for automated manipulation of programs.

As we will See, these respect i\e purposes are in some ways compatible, and in

othr ways conflicting. The answer to the question is therefore not a simple

yes or 110.

(onventional programming languages force the programmer to provide
enough detail so that a simple local interpreter (e.g., hardware, perhaps

with an iiterimiediate compilation step) can execute the code. Unfortunately,
iuich of this detail. such as the variety (,f special forms used for binding

variablies looping, conditional branching, etc., is often irrelevant to respect
Io tle algorithmic content of the code. As discussed in Section 3.1, this aspect
of convent ional programming languages conflicts with the caionicalness goal

of tlw Plan Calculus.
The goals of serving as a human communication imedium and serving as

a mnediun for automated manipulation can also conflict. For hunlan com-

1111111 cal ioll, a critical r(t rict ion is ilie fact that informat ion must ultim< tly'

I. *.I
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be laid out on a two-dimnensionial st ructunre (i.e.. oni thle rt I iiai ! i I; .I

automated manipulation systemns have no such iherent I oj)(

tion. It is possible (and often desirable) in such systeins to hl
interconnected information structures in which inrami kiirtis ,

are localized at a single point.
As discussed in Section 3.1, the graphical nature of lhe 1'umj ( iii ii i

motivated by a desire for ease of nmanipulat ion bY aii ;tit onuat 1(,) \

plan diagrams grow in size, they very quickly beconie laiB. ik'? ii iilm'ij. i-

understand visually. Although it may turn out that de Plaii ('a1 chl iii :1
good starting point for a graphically-oriented huniati comniwinurn A-1 (,!\
roninent, how to best use graphics for prograinining is still ani ouJ'i Wc'( kil

question.

Wide-Spectrum Languages

Recently, the notion of programming language has been extenlded to 11iid
so-called very high level languages (VHILL's). Sonie of these vii[.I.'s are cxc-%

cutable, although not by a simple local in1terpret er. and niot very' efticienit IY.

Others are really specification languages, in the senise that the comlpilcr IS~
making significant implemientation decisions, such as thlechoice of datal struc- *

tures and algorithm. Furthermore, most \IILL's are also wide spect rum .e.

they include a conventional high-level language as a sublanguage.
The Plan Calculus is also a widle-spectruin languiage. Thie input/ouit put

and test specifications used ini a giveni pla ii iiay V (0rres[)pomd Iopenrat k n.-
typically available in a c:onvent ionalI prograiiii igi. la i raag, or thi iv m ia Iw

much more abstract. To illustrate this poliom, consider how onje triins latc' ia
program from a conventional high- level prograinini ig Ia igi age Mit the 1;i La
Calculus. First, the primitives of the prograzriing language are dividod into
two categories:

*The "connective tissue" prinilt ives, such ats PROC. COND. SETQ. C;3. ;ii

RETURN in Lisp, which are concernedl solely wli acliiVi114 aa

control flow.

*The primitive operationls and tests, such as CAR. CDR. PLUS. NULL. MNVJSP.
and so on, in L~isp, which perforni actuial coniiit tru ils.

Eiachr primiitive op~eration or- test is tranislated Hit o thle ((i( nIn

P)mt /output or test specificat ion. Thre conniect ye t ssue p)i111u I](- 1!si mm



o(r'lEI FORMALISMS 43

N translated into the pattern of control flow arcs, data flow arcs, and join spec-
ifications between the boxes of the plan.

It summary, the answer to the question, Is the Plan Calculus a program-
muing language?, is Yes the Plan Calculus is a language with the expressive
power of a wide-spectrum, very-high-level programming language, but No it
is not necessarily appropriate for programmers to use directly.

The Evolution of Languages

A second relationship of this work to programming languages is the role of
clichs in the evolution of languages. Typically, part of the advance from
a lower to higher level language involves moving an entire class of decision-
making from the realm of the programmer to the realm of the compiler. For
example, in moving from machine language to high-level languages, the task
of register allocation was moved to the compiler. As part of moving from
high-level to very-high-level languages, an attempt is being made to make
efficient data structure selection the responsibility of the compiler.

Another part of language evolution, however, involves identifying cliches
.(common patterns of usage) in the lower language, and absorbing them into

the syntax of the next higher language. For example, the common patterns
of jumps and tests used to perform iteration in machine language became
the various looping forms of high-level languages. As part of moving from
high-level to very-high-level languages, an attempt is being made to extend
the svntax of languages to support common clusters of operations.

From this point of view, what it means to be a clich6 is not absolute, but
rather what a concept is called between the time it is identified as a common
usage in the current language and the time it gets absorbed into the next
higher level of language. However, this evolutionary process does not stop at
the next level -- as long as a language is used, new clich&S will arise.

4.2 Other Formalisms

Past efforts to codify programming knowledge have used one of the following
formialisms:

* program schemnas [19J

e program transform;,tions [4, 10. 12, 55]

-''
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* program refinement rules [5]

" formal grammars [47]

Although each of these representations has been fotuid isefidl i ~ l '"r,

plications, none combines all of the iimportant. featuires of th lie ;, P -( l'
Program scheinas (incomplete prograixi texts wit li const raifitN. oil thf in it

filled parts) have been used by Wirth [65] to catalog p)rogratiis ki, ()i r,
currence relations, by Basu and Misra [8] to represent tYpIIcal 1 :-V ,, , i
the loop invariant is already known, and by G'erhart ['i9] alld \l, i t3i1l

represent and prove the properties of various other cominloti folm in' I :Lfi:
nately, as illustrated by the linear search example Mi Sect ion 3. 1 lic ' %-ii t,
of conventional programming lanlguages is not well snit el for tin' 1,11 I(d,
generalization needed in this endeavor.el

Programming languages descended from Slinila [13], sticli as'11, ' :tl

and Alphard [52], provide a syntax for specifying stanidard foris .51wcl it.

linear search, namr canonical way'. 11oevr heeae minr
damental difficulties with using programn schemas to repr~esent stanii~da r 11,i
gram forms, which Siiula and its descendants (10 not solve. First. prograilws

(and therefore program schemnas) are not in general easy to coiine, nlor are
they additive. This means that when you combine two prograili scltei;,.
the resulting schema is not guaranteed to satisfy the constraints of hot Ii of
the original schemas, due to such factors as destructive ititetact inis bet weeti
variable assignments. Second, existing prograinmling lallgilages do not aIllo%%
multiple views of t lie same program or o%-erla pf uitg ii otl ile li jer.i olin's. I te p
reason for this is that, from the standpoint of' tltS hieelnguage. ia progin,1 Iii
still basically thought of as a set of inst ructioiis to lbe execuited. rilltw 111r Iti t'

a set of descriptions (e.g., blueprints) which together specify a contiut tion.

The most common approach for representinig iittpdlii('ial Ai (~ n
ships between clichk- is to use knowledge- based i progra iliIrtit'' .

and refinement rules, [5]. The major deficiency of iliei t n aii>. i

pared to ovei'lays in the Nll Calctilus, is ili' as V1itn't ivl(t\e tiI"'

and synthiesis. An overlay' is madle iup of two pdan.ts, either ()f wlli !I calli he
usedI as the "pattern." In a typical jprograrn vtI i'1 stcj t'p I l'Ii t1 >nI,Nl )k

is used as the pattern andl the left side plan -is j1st anit lat(' as air lit u-
plementation. Conversely. iii a ty pical anialYsis step). I lie le.1t slel p1,1I .t

"3 As op posed to the f'olding-i fold iig aund silltitar I urit1
4 0iln~ at 1, is 4 ku 111 ;J11t,1 1).i'r

hingroll [10I], which are i lt endedl Io be a sinal I set of \,'ry g'ner-al t r;l iI~ .4,, l .11 it.1 11,
be' comfposcd appropriately to ciutst rioit il i%, jly laitiuttghulitti m1 0i'Juit n1 I.,

% % % %

% %
% %
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as the pattern and the right side plan is instantiated as a more abstract
description. With program transformation and refinement rules, this sort
of symmetric use is not possible, since the right side is often a sequence of
substitution or modification actions to be executed, rather than a declarative
(escription that can be used as a pattern.

Another formalism used for codifying programming knowledge is formal
(string) grammars. For example, Ruth [47) constructed a grammar (with
global switches to control conditional expansions) which represented the class
of programs expected to be handed in as exercises in an introductory PL/1
programming class. This grammar was used in a combination of top-down,
bottom-up and heuristic parsing techniques in order to recognize correct
and near-correct programs. Miller and Goldstein [34] also used a grammar
formalism (implemented as an augmented transition network) to represent
classes of programs in a domain 3f graphical programming with stick figures.
The major shortcoming of these grammars is that they are string-based and
therefore too close to the programming language.

EN 4.3 Limitations of the Plan Calculus

This section outlines a number of known limitations of the Plan Calculus, and
suggests some directions for their remedy. The Plan Calculus is just a first
step in developing knowledge representations for the programming domain. %

Other Kinds of Knowledge

There are at least two fundamental kinds of knowledge used in the program-
ming task that the current Plan Calculus has no facilities to express.

One such kind of knowledge concerns the performance properties of al-
gorithis and data structures. This kind of knowledge is used, for example,
to choose between alternative implementations of a data abstraction or in-
put/output specification. The most straightforward idea for adding this kind
of information to the Plan Calculus would be to simply annotate plans with
cxplicit performance statements, such as "this is a quadratic algorithm", and
so on. However, this approach only scratches the surface of the issue. In or-
der to make effective engineering trade-offs, a formal language is also needed
for characterizing the distribution of input data to a program. Going even
(eeper, a representational framework is needed within which programs can
ie iaI vzed to identify bottlenecks, and within which potential optimizations

%*".N
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can be evaluated and compared. Recent work in this area hy lK;ni r*2 Th -

starts with a program representation simillar to the Plan Clu;'

A second kind of knowledge that figures prominently, ut nia:.,. progil:...

ruing tasks concerns the structures and constraints of the applIation: d(i~id.

For example, Barstow [6, 7] has studied ill (etait the role (f a iiwr-

models of physical processes in the synithesis of oil well log nt erpretalki

software. Since p~rograms can be written Ii anly domain. the prohii: (4of ;

resenting domain knowledge in prograziniiig is Inl pri icip le JIn !. _i, w!g

than the general problem of knowledge reipreseiitatioil. Tile h-!Ialelig fn

the p)oint of view of the prograniniig task, however, is how d min n iw 1m

edge interacts with "computer scienice knowledge" (a Igor-ithll s. s Irun

tures, performance properties, and so on). N eighbors [36], for exa iiiple. tiit

developed a transformation- based architect tre Ii which doiiiainlu ciiplt i

can be formalized and combined with software iinplenieiitatioii knlowledge.

Non-Local Flow

Thle Plan Calculus also has limitations Ii expressivxe power witl,, I Ic k1,141

of knowledge that it does address. Consider a jprolgra ii Ii whichi da ta fl()\\ Is

achieved by one component updating a global dat a base aind ai:,ot hr 1. i-

poiient queryig it. Usinig thle P lan Calctil ius sticiigl! h rwaidY t I. ii

data base would have to be both an in put anld out put, to cvery v idI Ic ti

updated it, and an input to every mnodile that quieried it. Thuis rtipresciutai-

tion does not allow for the fact that certaiii modules oiiill' univ indceIi'

cosm etain kinds of data, and that the iilitelidted dta fw i il;

therefore be significantl\, smaller than thle straightforward data 11low -,ip.
'What is suggested to solve this problein is a useif ovvi litys Iii wich i illi

table object (such as a data base) is colicepli allY part itlline I11( cV - it i

separate objects, each with a separate data flow.

A similar problemn arises w\It h t he st milght forward 1i.e (d' -()w~ I ,I 11w

the Plan Calculus to miodel THROW Ii lsp. or iliterrui~it lu1.1 : 111;f Ii !,I

languages. Ini this case, the straight forward c(,itut 11)% _r~4tjih

correspolding control flow exit froiii every utuod Ilh cililitug 1 ii. 111 i'l P;1'

THROW (or interrupt signal). leclimiicaiiv i., his makes extii c a iinnn

into a test specificationi. ( oniceptuailv, however. this, weti VI'>: \\l't

need ed is soi iie wayv (a gaiii1 perl ia 1, s Isi ig o% cr lav J of 1:v n

control flow separate fromn lie liiterrup1 t - h.asd ((lilt i ul

' 4
1farel's staftciiurts [231 Jroviki at nift' , iI s ( ilton tt ~ it, dwi pn d4 \\iiiI a

'64-
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Figure 40. The two plan diagrams at the left have the same meaning. However, "
deletion of the samne control flow arc in both plans results in two new plans (Shown -
on the right) with different meanings.
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The data and control flow problems described above may to' sitjuarizel
by observing that the current Plan Calculus is oriented toward i'present II,-
the local flow of data and control. Both of the examples ahove are a kind ,fO

non-local flow.

Canonicalness

A desired property of the Plan Calculus is that there be a 14 .1,*1 , ""o
sentation for each clich6. Since being a clich6 is essentially al empirical.
pre-theoretic notion, deciding whether this property holds is not a f,,rinallv"
definable question. There is, however, a closely related formal piqwrty of
the Plan Calculus which is also desired (and unfortunately. doe-, not hold
in certain cases): Syntactically distinct plans should also be semantically
distinct. The reason for desiring this property is illustrated in Figure -10.

As pointed out in Section 3.3, the two plans on the lcft of Figure -10 have
the same meaning, due to the transitivity of control flow. This is more Ih an
just a problem of elegance--the same syntactic nianipulat ion applied to cacl
plan can now result in two new plans with different meanings, as illustrated
in the figure. Deleting the control flow arc between between B and (' in the
top plan results in a plan in which C is unordered with respect to A and
B. Deleting the same arc in the bottom plan results in a plan in which ('
must still follow A. A similar problem arises with control flow arcs that arc

redundant with data flow arcs.
One solution to this problem is to canoiiicalize plaii ditigrauis oi 0 lie

transitive closure of the control flow. Under this solUti,, onlv th, lie t,oi

plan on the left of Figure 40 would be syntactically legal. A couwse,ence of
this restriction is that it would be illegal to add a control flow a Ic b-twet'n H
and C to the plan in the top-right of Figure 40- -one would have to fir ,t add
the arc from A to C and then from B to C'. Another way to guarantee this
restriction would be to automatically update the t ransit i\ve closure wheiever
a new control flow arc is added.

An alternative approach to solving this coitrol flow pIrth,. is to 111,c
cotrol flow out of the structural suldanguiue of t' Phl n (P',la ,d . aii,
into the logical sublanguage. This is th appl)roaclh takeii in flie ri... -i e ,

implementation of the Plan Calculus 13]. TIis approach tak>i,-idtaa,, t
facilities in the logical reasoning engitie for ('flti,' Y Iv 1i ii l l2 -
relations, which are also needed for other )urpoi'".

ae,
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4.4 Further Work

This section describes further work by the author and others that extends
and builds upon the notions of inspection methods, cliches and plans. Some

-. of this work has already been completed and is therefore only suninarized
-4 here, with references to the full (scriptions elsewhere. Current work in

progress and future directions are also described.

Libraries of Clich6s

The most important next step in this work is to use the Plan Calculus to

legii in earnest the task of codifying programming clichs. The author has
, cniuiled an initial library of several hundred cliches in the area of basic

t,.chmquiiies for mamipulatii ig symbolic data Structures (see [39, 41]). T1 is
library includes:

* data abstractions. such as set, graph, mapping, list, sequence, and tree.

* * operation clich- s, such as addition, deletion and associative retrieval in

; set. inverting a mapping, and modifying arcs in a graph.

% data structure implementation clich6s, such as indexed sequence and

hash table.

e clichd algorithm fragments, such as searching, generating and accu-

xiiulating.

In addition to the various kinds of overlays between these clichs, the
library is organized taxonomically using two kinds of inheritance-like rela-

tionships: specialization arid extension. Recalling that a plan is essentially

a set of parts with constraints between them, specialization corresponds to
adding constraints; extension corresponlds to adding parts.

The contents of this initial library was determined primarily by the re-

(llfiremnent of giving a complete account of the design of the hash table ex-
anple of Section 2. llarstow and Green [5, 21] have codified a similar body

of cliches in this same general area using a transformational formalism. One
direct ion to continue this codification is to (eepen tle coverage of the library
within the area of basic techniques. For example, it might be productive to

work syskt-enatica ly thro,,gh basic texts such as [27] or [2).

'A..
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Programming Programming

Input/Output Mathematical
Methods Algorithms

Basic Techniques

Figure 41. A Venn diagrami suggesting the overlap between programmning chlhC'
used in different application areas.

A second direction to continue the codification of clich6s is to broaden
the coverage of the initial library toward more specialized aplilicat iGo areCas.
Figure 41 suggests how this broadening might proceed from more generial to
more specific clich6s. The figure illustrates the relationship one would expect
to find between the clich6.s used in three areas of prograinining,: statistuC.
graphics, and systems. The intersection of all three areas ini the center rep-
resents basic programming techiniques, where the initial codlifica tion effut

has focused. The overlap between each pair of areas represenits clichi& of
intermediate generality. The remaining part of each area represents the most
specialized clich~s in that area.

The Logical Sublanguage

Thle logical sublanguage of the Plan Calculus comprises the precondItilons,
postconditions and other logical statements which annotate plan diagrano .

This logical language has been implemented inl a reasoinlg systelli called .

CA KE [15, 43, 41]. C7A KE support-s a typed1 proposi tionalI logic with i I i d W
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(juai ti heat jolial facilities. The syst cii includes a type Inhleritance lat t i

ail Sp~ecial procedutres for reasoii ilig. withI sets, equality and other operat oi
with commijon lericpic-tesc as trysiiv andl so (w

Ii alel~ri lrIrlcsh tan iity. vyinilicte
Side effects are miodelled in the laniguiage using a sit uat ioinal a pproachi Si nil
1 () [32j.

AIEis a hybrid system inl which manipulation of plan diagrams and re
soltii ig in thle logical slillanguage are intermixed as needed. Th-Iis is ach ievc

thirot i gi a ii app roaclh inl whticli thle formal seint ics of data flow, con t rol fib

and~ other synltactic structures of plan diagrams (see [40, 41, 421) exist
explicit logical assertions inl the reasoning system's dlatab~ase. For exa tipl

the sema nt ics of a data flow' arc is anl equality between terms representing t I
appropriat e ports. plus a partial order assertion bet weeni thle correspondirt
sit tattilus.

Teleological StruLcture

The lugical sublangtiage makes it possible to talk about anl important kill

of structutre inl a plan, in addit ion to its control and data flow structure. TI

*teleolog)iCar1 5 ,qt ruct nre of a p1ln is the set of logical relationships between ti-
precondit ions and post conc]it ions of its input/out put and test specificatic
roles.

Figure 12 illustrates the concept of teleological structure with anl abstra,
(xaitlle.The figure shows anl implementation overlay between a plan wit

thlree rules, P~, Q, R,. and ant inptut/out put specification, S. A, A', S,.Lh
(c., arc' formlulae inl thle logical s ullanguage, which form the lprecond itiot
aid postconiditioiis of the v-ariotis specifications, as shown. Data and contr
flue.\ a rcs between P), Q, and R?, are omitted.

hn ordeI(r for thle overlay iii Figure 412 to be valid. each postcondition of
must l)C iitplied by om postcond it ion of P, Q, or 1R; andl each precondlit ii
of 1) ,anR must beipidb lhrapostcoiudit loll of a preceding ste

01r at ucco id t ioll f S. "The pat tern of t hese logical relationships provilde
dle(per chiaract en za luln of the piirposc of each step inl it plan, than is provid

by (uit wI and~ dat a flow structure alune.
For CxNiiple,1. We(aSeInl Figure .12 that 1) is essenitially ap-prt

st ep1 all of its Ipostcondhit ions are prerequisites for later steps. Q and R?,

"F romti Il (,reek tecs, ineanuitg Imirpose. This terin is first introduiced inl [415].
"Ill 1 S.Sibiit v t hat a post cundIit ion ahileved by oneC step may be "undndie" b)

Mills('jnit Ntr[ is takeni care of inside the hu)gic throuigh th lise, of situiations.
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%the other hand, are main steps-each contributes to accomplishing part of
the overall postconditions of S. (This vocabulary for describing steps of a

plan in terms of their purpose is due to Goldstein [20].)
Further understanding the role of teleological structure in program anal-

ysis and synthesis is an important area for future work. For example, an
analysis of the teleological structure in Figure 42 suggests that step R may
be replaced by a weaker specification, since postcondition H is not needed to
accomplish any part of S. In CAKE, teleological structure is represented by
the dependencies in a truth-maintenance system.

The Programmer's Apprentice

The work described in this paper has evolved within the context of a project
aimed at developing an intelligent, interactive assistant for software develop-
ment, called the Programmer's Apprentice. The Plan Calculus serves as the
"mental language" of the Apprentice.

Plan diagrams were originally developed for use in the Apprentice by Rich
and Shrobe [45] and later extended by Waters [58]. Overlays, the logical
sublanguage, and the formal semantics of the Plan Calculus were added by
lRich [41]. The current implementation of the Plan Calculus in CAKE is only
the most recent in a series of versions that have been experimented with
over a period of years. As part of these experiments, modules have been
implemented to translate between the Plan Calculus and an assortment of
programming languages, including (subsets of) Lisp, Ada, PL/1, Fortran,
and Cobol.

As part of the Programmer's Apprentice project, prototype systems has
been implemented using the Plan Calculus to demonstrate both analysis and
synthesis by inspection.

Wills [63] has implemented a prototype analysis by inspection system that
first translates an input program into the Plan Calculus and then applies
a graph parsing algorithm developed by Brotsky [9]. The grammar used
in the parsing is derived from Rich's library of clichds for basic symbolic
programming techniques [41, 39]. As a way of communicating the results of
its analysis, Wills' system produces a kind of program explanation. Figure 43
shows the result of applying Wills' program to the TABLE-LOOKUP function of
Section 2. Note that the convention in this explanation is that terms with
initial capitals are the names of clichs or roles; terms in all capitals are
ihinlifiers in the Lisp program.

,..Z'€" .
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(DEFUN TABLE-LOOKUP (TABLE KEY),,,

(LET ((BUCKET (AREF TABLE (HASH KEY TABLE))
(LOOP

(IF (NULL BUCKET) (RETURN NIL)) .
(LET ((ENTRY (CAR BUCKET))

(IF (EQUAL (KEY ENTRY) KEY) (RETURN ENTRY)))
(SETQ BUCKET (CDR BUCKET))) -

TABLE-LOOKUP is an Associative Retrieval operation. "
If there is an element of the Set TABLE whose Key ,.
is KEY, then it returns it; otherwise it returns nil. • 0
The Key is extracted from an entry by the function KEY.

The Set is implemented as a Hash Table./
The Hash Table is implemented as an Array of Buckets,.z
indexed by hash code. >

The Hash Function is HASH.
The Buckets are implemented as Lists. There are no
header cells. A Linear Search is used to determine ..
whether or not there is an element with the given Key""
in the fetched Bucket, BUCKET..>

Figure 43. Wills' system analyzed the undocumented Common Lisp code above
and automatically produced an explanation of its implementation in terins of it.[.
library of cliches. "'

%
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Define a linear-search program BUCKET-DELETE with
parameters BUCKET and KEY.

Fill the enumerator with a trailing-pointer-list-enumeration
of BUCKET.

Fill the search-criterion with (EQUAL (KEY (CAR LIST)) KEY).
Fill the action with a splice-out of PREVIOUS.

(DEFUN BUCKET-DELETE (BUCKET KEY)

(LET* ((PREVIOUS BUCKET)
(LIST (CDR PREVIOUS)))

(LOOP
(IF (NULL LIST) (RETURN NIL))
(WHEN (EQUAL (KEY (CAR LIST)) KEY)

(RPLACD PREVIOUS (CDDR PREVIOUS))
(RETURN NIL))

(SETQ PREVIOUS LIST)

(SETQ LIST (CDR LIST)))))

Figure 44. Waters' system synthesized the Lisp code above from the description
of the clich6s to be used.

5...,
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Waters [61, 601 has implemented a prototype synthesis b% inspedt ion svl-ol

tern, called KBEMACS (for Knowledge-Based Editor in ENMACS). Kt::E'',
allows a programmer to construct and modify programs more (uickly ;ill
reliably than using a conventional program editor, by supporting oper.* io:,-
on a program in terms of clich&. For example, Figure 44 shows a sel ,"
commands given to KBEMACS that produces a version of the BUCKET-DELETE

program. The only difference between the version of BUCKET-DELETE produced

by KBEMACS and the version in Section 2 is the use of an unnecessary len
porary variable, LIST. This is due to the fact that the algorithin ImEiiMAC'

uses for achieving data flow using variables is not optimal.

Other Related Work

Program representations related to and derived from the Plan Calculus have
been used by others in the areas of program recognition [16]. programming..
tutors [28], program translation [14,62], algorithm design [26], debugging J51,
31], and maintenance [33]

Soloway and Ehrlich [56] have conducted a number of empirical stud- .%

ies with programmers which support the psychological reality of plans and
cliches.
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